IMÁGEN - ESTUDIO .-
Se denomina sección cónica (o simplemente cónica) a todas las curvas intersección entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en cuatro tipos: elipse, parábola, hipérbola ycircunferencia.
En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del eje del cono (β), pueden obtenerse diferentes secciones cónicas, a saber:
- β < α : Hipérbola (naranja)
- β = α : Parábola (azulado)
- β > α : Elipse (verde)
- β = 90º: Circunferencia (un caso particular de elipse) (rojo)
Si el plano pasa por el vértice del cono, se puede comprobar que:
- Cuando β > α la intersección es un único punto (el vértice).
- Cuando β = α la intersección es una recta generatriz del cono (el plano será tangente al cono).
- Cuando β < α la intersección vendrá dada por dos rectas que se cortan en el vértice.
- cuando β = 90º El ángulo formado por las rectas irá aumentando a medida β disminuye, hasta alcanzar el máximo (α) cuando el plano contenga al eje del cono (β = 0).
No hay comentarios:
Publicar un comentario