LA SISMOLOGÍA .-
Este efecto total llamado patrón de radiación, está representado por la curva en forma de trébol de la figura 7a. La longitud de una línea recta que vaya desde el origen de coordenadas hasta la curva, en una dirección dada, nos indica la amplitud de las ondas P generadas por la ruptura en esa dirección. La parte continua del trébol representa compresión y la punteada dilatación. Vemos que la amplitud tiene un máximo en direcciones que se encuentran sobre el plano perpendicular a la falla y forman ángulos de 45° con ésta; tiene mínimos, llamados nodos, sobre dicho plano en la dirección perpendicular a la falla y sobre el plano de la falla en todas direcciones.
El patrón de radiación para las ondas S (Figura 7b) es parecido al de las ondas P pero está rotado 45° con respecto a éste; las líneas sólida y punteada indican ahora diferentes polaridades para el inicio de la onda. Las ondas superficiales tienen patrones de radiación igualmente sencillos pero más difíciles de interpretar.
Nótese que si el deslizamiento hubiera ocurrido, en vez de en el plano de falla, en el plano perpendicular a él (llamado plano auxiliar), el patrón de radiación sería el mismo. Por tanto, existe siempre una incertidumbre en la determinación de planos de falla a partir de estudios del patrón de radiación, aunque generalmente es posible determinar cual de los dos posibles planos es el de falla, basándose en otras observaciones o en consideraciones tectónicas.
Por lo tanto, del estudio de sismogramas para un sismo determinado, obtenidos en varios puntos de la superficie terrestre a donde llegan ondas que salieron del foco en distintas direcciones, podemos determinar cuál es el patrón de radiación de este sismo y de allí cuál es su mecanismo focal. De éste se puede inferir el tipo de esfuerzos que actúan en la región donde ocurrió y la posible orientación del plano de falla; ambos datos muy importantes para la caracterización del tectonismo. La aplicación de la sismología a estudios de tectonismo se conoce como sismotectónica.
Se llama sismicidad a la actividad sísmica en un lugar determinado. Los observatorios sismológicos rutinariamente localizan el hipocentro de los sismos, determinan sus magnitudes (pueden ser varias, de distintos sismo), anotan los reportes de daños causados, todo esto en boletines y lo almacenan en bases de datos. Gracias a esta labor, en la actualidad es las principales características de la sismicidad en todo el mundo.
La figura 8 muestra la sismicidad mundial registrada durante 1961-1967; los puntos representan epicentros y su tamaño es proporcional a su magnitud (los sismos muy pequeños no aparecen). Los grandes terremotos ocurridos entre 1904 y 1976 (según H. Kanamori, 1978) se indican en la figura 9.
Es de inmediato evidente que los sismos no están distribuidos en forma uniforme sobre la Tierra, sino en bandas que en su mayoría coinciden con las orillas o con las partes medias de los océanos. En algunas zonas continentales alejadas de los océanos la sismicidad coincide con regiones montañosas, como en los Alpes y los Himalayas.
En las trincheras oceánicas la sismicidad es somera cerca de ellas y se hace cada vez más profunda conforme se adentra bajo el continente o arco de islas correspondiente. Estas zonas inclinadas de sismicidad son llamada zonas de Benioff-Wadati, y es en ellas donde ocurren los sismos más profundos. La figura 10 ilustra la sismicidad de la zona de Benioff-Wadati asociada con la trinchera de Kurile-Kamchatka; arriba a la derecha podemos ver la topografía a lo largo de dos cortes que atraviesan la trinchera.
No hay comentarios:
Publicar un comentario