sábado, 1 de noviembre de 2014

FUNCIONES ARITMÉTICAS


FUNCIÓN : DE MÖBIUS .- ......................:http://es.wikipedia.org/w/index.php?title=Funci%C3%B3n_de_M%C3%B6bius&printable=yes

Möbius Function

DOWNLOAD Mathematica Notebook Contribute to this entryMobiusFunction
The Möbius function is a number theoretic function defined by
 mu(n)={0   if n has one or more repeated prime factors; 1   if n=1; (-1)^k   if n is a product of k distinct primes,
(1)
so mu(n)!=0 indicates that n is squarefree (Havil 2003, p. 208). The first few values of mu(n) are therefore 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, ... (OEIS A008683). Similarly, the first few values of |mu(n)| for , 2, ... are 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, ... (OEIS A008966).
The function was introduced by Möbius (1832), and the notation mu(n) was first used by Mertens (1874). However, Gauss considered the Möbius function more than 30 years before Möbius, writing "The sum of all primitive roots [of a prime number p] is either =0 (when p-1 is divisible by a square), or =+/-1 (mod p) (when p-1 is the product of unequal prime numbers; if the number of these is even the sign is positive but if the number is odd, the sign is negative)" (Gauss 1801, Pegg 2003).
The Möbius function is implemented in Mathematica as MoebiusMu[n].
The summatory function of the Möbius function
 M(x)=sum_(n<=x)mu(n)
(2)
is called the Mertens function.
MoebiusMuDensityPlot
The following table gives the first few values of n for mu(n)=-1, 0, and 1. The values of the first 10^4 integers are plotted above on a 100×100 grid, where values of n with mu(n)=-1 are shown in red, mu(n)=0 are shown in black, and mu(n)=1 are shown in blue. Clear patterns emerge where multiples of numbers each share one or more repeated factor.
mu(n)Sloanevalues of n
-1A0300592, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, ...
0A0139294, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, ...
1A0302291, 6, 10, 14, 15, 21, 22, 26, ...

The Möbius function has generating functions
 sum_(n=1)^infty(mu(n))/(n^s)=1/(zeta(s))
(3)
for R[s]>1 (Nagell 1951, p. 130). This product follows by taking one over the Euler product and expanding the terms to obtain
1/(zeta(s))=product_(k=1)^(infty)(1-1/(p_k^s))
(4)
=(1-1/(p_1^s))(1-1/(p_2^s))(1-1/(p_3^s))...
(5)
=1-(1/(p_1^s)+1/(p_2^s)+1/(p_3^s)+...)+(1/(p_1^sp_2^s)+1/(p_1^sp_3^s)+...+1/(p_2^sp_3^s)+1/(p_2^sp_4^s)+...)-...
(6)
=1-sum_(0<i)1/(p_i^s)+sum_(0<i<j)1/(p_i^sp_j^s)-sum_(0<i<j<k)1/(p_i^sp_j^sp_k^s)+...
(7)
=sum_(n=1)^(infty)(mu(n))/(n^s)
(8)

(Derbyshire 2004, pp. 245-249).
An additional generating function is given by
 sum_(n=1)^infty(mu(n)x^n)/(1-x^n)=x
(9)
for |x|<1. It also obeys the infinite sums
sum_(n=1)^(infty)(mu(n))/n=0
(10)
sum_(n=1)^(infty)(mu(n)lnn)/n=-1
(11)
sum_(n=1)^(infty)(|mu(n)|)/(n^2)=(15)/(pi^2)=1.51981775...
(12)
sum_(n=1)^(infty)(chi_({n:mu(n)=-1}))/(n^2)=9/(2pi^2)=0.45594532...
(13)
sum_(n=1)^(infty)(chi_({n:mu(n)=1}))/(n^2)=(21)/(2pi^2)=1.06387242...
(14)

(OEIS A082020, A088245, and A088245; Havil 2003, p. 208), as well as the divisor sum
 sum_(d|n)|mu(d)|=2^(omega(n)),
(15)
where omega(n) is the number of distinct prime factors of n (Hardy and Wright 1979, p. 235).
mu(n) also satisfies the infinite product
 product_(n=1)^infty(1-x^n)^(mu(n)/n)=e^(-x)
(16)
for |x|<1 (Bellman 1943; Buck 1944;, Pólya and Szegö 1976, p. 126; Robbins 1999). Equation (◇) is as "deep" as the prime number theorem (Landau 1909, pp. 567-574; Landau 1911; Hardy 1999, p. 24).
The Möbius function is multiplicative,
 mu(mn)={mu(m)mu(n)   if (m,n)=1; 0   if (m,n)>1,
(17)
and satisfies
 sum_(d|n)mu(d)=delta_(n1),
(18)
where delta_(ij) is the Kronecker delta, as well as
 sum_(d)mu(d)sigma_0(n/d)=1,
(19)
where sigma_0(n) is the number of divisors (i.e., divisor function of order zero; Nagell 1951, p. 281).

No hay comentarios:

Publicar un comentario