sábado, 1 de noviembre de 2014

FUNCIONES ARITMÉTICAS


FUNCIÓN : DE LIOUVILLE .- ......................:http://es.wikipedia.org/w/index.php?title=Funci%C3%B3n_de_Liouville&printable=yes









FUNCIÓN DE MERTENS .- .....................:http://es.wikipedia.org/w/index.php?title=Funci%C3%B3n_de_Mertens&printable=yes

Mertens Function

DOWNLOAD Mathematica Notebook Contribute to this entryMertensFunction
The Mertens function is the summary function
 M(n)=sum_(k=1)^nmu(k),
(1)
where mu(n) is the Möbius function (Mertens 1897; Havil 2003, p. 208). The first few values are 1, 0, -1, -1, -2, -1, -2, -2, -2, -1, -2, -2, ... (OEIS A002321). M(n) is also given by the determinant of the n×n Redheffer matrix.
Values of M(10^n) for , 1, 2, ... are given by 1, -1, 1, 2, -23, -48, 212, 1037, 1928, -222, ... (OEIS A084237; Deléglise and Rivat 1996).
The following table summarizes the first few values of n at which M(n)=k for various k
kSloanen such that M(n)=k
-313, 19, 20, 30, 33, 43, 44, 45, 47, 48, 49, 50, ...
-25, 7, 8, 9, 11, 12, 14, 17, 18, 21, 23, 24, 25, 29, ...
-13, 4, 6, 10, 15, 16, 22, 26, 27, 28, 35, 36, 38, ...
0A0284422, 39, 40, 58, 65, 93, 101, 145, 149, 150, ...
1A1186841, 94, 97, 98, 99, 100, 146, 147, 148, 161, ...
295, 96, 217, 229, 335, 336, 339, 340, 345, 347, 348, ...
3218, 223, 224, 225, 227, 228, 341, 342, 343, 344, 346, ...

An analytic formula for M(x) is not known, although Titchmarsh (1960) showed that if the Riemann hypothesisholds and if there are no multiple Riemann zeta function zeros, then there is a sequence T_k with k<=T_k<=k+1such that
 M_0(x)=lim_(k->infty)sum_(rho; |gamma|<T_k)(x^rho)/(rhozeta^'(rho))-2 
 +sum_(n=1)^infty((-1)^(n-1))/((2n)!nzeta(2n+1))((2pi)/x)^(2n),
(2)
where zeta(z) is the Riemann zeta function,
 M_0(x)={M(x)-1/2mu(x)   if x in Z^+; M(x)   otherwise,
(3)
and  runs over all nontrivial zeros of the Riemann zeta function (Odlyzko and te Riele 1985).
The Mertens function is related to the number of squarefree integers up to n, which is the sum from 1 to n of the absolute value of mu(k),
 sum_(k=1)^n|mu(k)|∼6/(pi^2)n+O(sqrt(n)).
(4)
The Mertens function also obeys
 sum_(n=1)^xM(x/n)=1
(5)
(Lehman 1960).
Mertens (1897) verified that |M(x)|<=sqrt(x) for x<10000 and conjectured that this inequality holds for all nonnegative x. The statement
 |M(x)|<x^(1/2)
(6)
is therefore known as the Mertens conjecture, although it has since been disproved.
Lehman (1960) gives an algorithm for computing M(x) with O(x^(2/3+epsilon)) operations, while the Lagarias-Odlyzko (1987) algorithm for computing the prime counting function pi(x) can be modified to give M(x) in O(x^(3/5+epsilon))operations. Deléglise and Rivat 1996) described an elementary method for computing isolated values of M(x) with time complexity O(x^(2/3)(lnlnx)^(1/3)) and space complexity O(x^(1/3)(lnlnx)^(2/3)).

No hay comentarios:

Publicar un comentario