miércoles, 22 de junio de 2016

Elementos químicos

El carbono (del latínCarbo) es un elemento químico de número atómico 6, masa atómica 12.01, símbolo C. Como miembro del grupo de los carbonoideos de la tabla periódica de los elementos. Es sólido a temperatura ambiente. Dependiendo de las condiciones de formación, puede encontrarse en la naturaleza en distintas formasalotrópicas, carbono amorfo y cristalino en forma de grafito o diamante respectivamente. Es el pilar básico de la química orgánica; se conocen cerca de 16 millones de compuestos de carbono, aumentando este número en unos 500.000 compuestos por año. Forma el 0,2 % de la corteza terrestre.

Boro ← Carbono → Nitrógeno
 Hexagonal.svgCapa electrónica 006 Carbono.svg

6
C
 
        
        
                  
                  
                                
                                
Tabla completa • Tabla ampliada
C,6.jpg
Negro (grafito)
Incoloro (diamante)
Diamond and graphite2.jpg
Información general
Nombresímbolo,númeroCarbono, C, 6
Serie químicaNo metales
Grupoperíodo,bloque142p
Masa atómica12,0107(8) u
Configuración electrónica[C]1s22s22p2
Dureza Mohs1-2 (grafito)
10 (diamante)
Electrones pornivel2, 4 (imagen)
Propiedades atómicas
Radio medio70 pm
Electronegatividad2,55 (Pauling)
Radio atómico(calc)67 pm (Radio de Bohr)
Radio covalente77 pm
Radio de van der Waals170 pm
Estado(s) de oxidación4, 2
ÓxidoÁcido débil
1.ª Energía de ionización1086,5 kJ/mol
2.ª Energía de ionización2352,6 kJ/mol
3.ª Energía de ionización4620,5 kJ/mol
4.ª Energía de ionización6222,7 kJ/mol
5.ª Energía de ionización37 831,1 kJ/mol
6.ª Energía de ionización47 277,1 kJ/mol
Propiedades físicas
Estado ordinarioSólido (no magnético)
Densidad2267 kg/m3
Punto de fusiónDiamante: 3823 K
Grafito: 3800
Punto de ebulliciónGrafito: 5100 K
Entalpía de vaporizaciónGrafito; sublima: 711 K kJ/mol
Entalpía de fusiónGrafito; sublima: 105 K kJ/mol
Varios
Estructura cristalinahexagonal
N° CAS7444-04-0
N° EINECS231-153-3
Calor específico710 J/(K·kg)
Conductividad eléctrica61×103 S/m
Conductividad térmica129 W/(K·m)
Velocidad del sonidoDiamante: 18.350 m/s a 293,15 K (20 °C)
Isótopos más estables
Artículo principal: Isótopos del carbono
isoANPeriodoMDEdPD
MeV
12C98,9 %Estable con 6 neutrones
13C1,1 %Estable con 7 neutrones
14Ctrazas5730 añosβ0,15614N
Valores en el SI y condiciones normales de presión y temperatura, salvo que se indique lo contrario.

Características

El carbono es un elemento notable por varias razones. Sus formas alotrópicas incluyen, una de las sustancias más blandas (el grafito) y una de las más duras (el diamante) y, desde el punto de vista económico, es de los materiales más baratos (carbón) y uno de los más caros (diamante). Más aún, presenta una gran afinidad para enlazarse químicamente con otros átomos pequeños, incluyendo otros átomos de carbono con los que puede formar largas cadenas, y su pequeño radio atómico le permite formar enlaces múltiples. Así, con el oxígeno forma el dióxido de carbono, vital para el crecimiento de las plantas(ver ciclo del carbono); con el hidrógeno forma numerosos compuestos denominados genéricamente hidrocarburos, esenciales para la industria y el transporte en la forma decombustibles fósiles; y combinado con oxígeno e hidrógeno forma gran variedad de compuestos como, por ejemplo, los ácidos grasos, esenciales para la vida, y los ésteresque dan sabor a las frutas; además es vector, a través del ciclo carbono-nitrógeno, de parte de la energía producida por el Sol.1

Estados alotrópicos

Estructura del grafito
Se conocen cinco formas alotrópicas del carbono, además del amorfo: grafitodiamantefullerenos,nanotubos y carbinos.2
Una de las formas en las cuales se encuentra el carbono es el grafito se caracteriza porqué los átomos de carbono se encuentran "en los vértices de hexágonos que tapiza un plano"3 , es de color negro, opaco y blando, es el material del cual está hecha la parte interior de los lápices de madera. El grafito tiene exactamente los mismos átomos del diamante, pero por estar dispuestos en diferente forma, por lo que tienen distintas propiedades físicas y químicas. Los diamantes naturales se forman en lugares donde el carbono ha sido sometido a grandes presiones y altas temperaturas, su estructura es tetraédrica, que da como resultado una rede tridimensional y a diferencia del grafito tiene un grado de dureza alto: 10 Mohs. Los diamantes se pueden crear artificialmente, sometiendo el grafito a temperaturas y presiones muy altas.El precio del grafito es menor al de los diamantes naturales, pero si se han elaborado adecuadamente tienen la misma dureza, color y transparencia.
La forma amorfa es esencialmente grafito, pero no llega a adoptar una estructura cristalina macroscópica. Esta es la forma presente en la mayoría de los carbones y en el hollín.
Disposición geométrica de los orbitales híbridos sp2.
A presión normal, el carbono adopta la forma del grafito, en la que cada átomo está unido a otros tres en un plano compuesto de celdas hexagonales; este estado se puede describir como 3 electrones de valencia en orbitales híbridos planos sp² y el cuarto en el orbital p.
Las dos formas de grafito conocidas alfa (hexagonal) y beta (romboédrica) tienen propiedades físicas idénticas. Los grafitos naturales contienen más del 30 % de la forma beta, mientras que el grafito sintético contiene únicamente la forma alfa. La forma alfa puede transformarse en beta mediante procedimientos mecánicos, y esta recristalizar en forma alfa al calentarse por encima de 1000 °C.
Estructura del diamante
Debido a la deslocalización de los electrones del orbital pi, el grafito es conductor de la electricidad, propiedad que permite su uso en procesos de electroerosión. El material es blando y las diferentes capas, a menudo separadas por átomos intercalados, se encuentran unidas por enlaces de Van de Waals, siendo relativamente fácil que unas deslicen respecto de otras, lo que le da utilidad como lubricante.
Disposición geométrica de los orbitales híbridos sp3.
A muy altas presiones, el carbono adopta la forma del diamante, en el cual cada átomo está unido a otros cuatro átomos de carbono, encontrándose los 4 electrones en orbitales sp³, como en los hidrocarburos. El diamante presenta la misma estructura cúbica que elsilicio y el germanio y, gracias a la resistencia del enlace químico carbono-carbono, es, junto con el nitruro de boro, la sustancia más dura conocida. La transición a grafito a temperatura ambiente es tan lenta que es indetectable. Bajo ciertas condiciones, el carbono cristaliza como lonsdaleíta, una forma similar al diamante pero hexagonal.
El orbital híbrido sp1 que forma enlaces covalentes solo es de interés en química, manifestándose en algunos compuestos, como por ejemplo el acetileno.
Fullereno C60.
Los fullerenos fueron descubiertos hace 15 años4 tienen una estructura similar al grafito, pero el empaquetamiento hexagonal se combina con pentágonos (y en ciertos casos, heptágonos), lo que curva los planos y permite la aparición de estructuras de formaesféricaelipsoidal o cilíndrica. El constituido por 60 átomos de carbono, que presenta una estructura tridimensional y geometría similar a un balón de fútbol, es especialmente estable. Los fullerenos en general, y los derivados del C60 en particular, son objeto de intensa investigación en química desde su descubrimiento a mediados de los 1980.
A esta familia pertenecen también los nanotubos de carbono, que pueden describirse como capas de grafito enrolladas en forma cilíndrica y rematadas en sus extremos por hemiesferas (fulerenos), y que constituyen uno de los primeros productos industriales de la nanotecnología.

Aplicaciones

El principal uso industrial del carbono es como un componente de hidrocarburos, especialmente los combustibles fósiles (petróleo y gas natural). Del primero se obtienen, por destilación en las refinerías,gasolinasqueroseno y aceites, siendo además la materia prima empleada en la obtención deplásticos. El segundo se está imponiendo como fuente de energía por su combustión más limpia. Otros usos son:
  • El isótopo radiactivo carbono-14, descubierto el 27 de febrero de 1940, se usa en la datación radiométrica.
  • El grafito se combina con arcilla para fabricar las minas de los lápices. Además se utiliza como aditivo en lubricantes. Las pinturas anti-radar utilizadas en el camuflaje de vehículos y aviones militares están basadas igualmente en el grafito, intercalando otros compuestos químicos entre sus capas. Es negro y blando. Sus átomos están distribuidos en capas paralelas muy separadas entre sí. Se forma a menos presión que el diamante. Aunque parezca difícil de creer, un diamante y la mina de un lapicero tienen la misma composición química: carbono.
  • El diamante es transparente y muy duro. En su formación, cada átomo de carbono está unido de forma compacta a otros cuatro átomos. Se originan con temperaturas y presiones altas en el interior de la tierra. Se emplea para la construcción de joyas y como material de corte aprovechando su dureza.
  • Como elemento de aleación principal de los aceros.
  • En varillas de protección de reactores nucleares.
  • Las pastillas de carbón se emplean en medicina para absorber las toxinas del sistema digestivo y como remedio de la flatulencia.
  • El carbón activado se emplea en sistemas de filtrado y purificación de agua.
  • El carbón amorfo ("hollín") se añade a la goma para mejorar sus propiedades mecánicas. Además se emplea en la formación de electrodos (p. ej. de las baterías). Obtenido por sublimación del grafito, es fuente de los fulerenos que pueden ser extraídos con disolventes orgánicos.
  • Los fullerenos se emplean en médicina, "se ha probado que un derivado soluble en agua del C60 inhibe a los virus de inmunodeficiencia humana VIH-1 y VIH-2.5
  • La fibra de carbono (obtenido generalmente por termólisis de fibras de poliacrilato) debido a que son de alta resistencia se añade a resinas de poliéster, obteniéndose los materiales denominados fibras de carbono, son empleadas fabricar raquetas de de tennis.
  • Las propiedades químicas y estructurales de los fulerenos, en la forma de nanotubos, prometen usos futuros en el incipiente campo de la nanotecnología.

Historia

El carbón (del latín carbo -ōnis, "carbón") fue descubierto en la prehistoria y ya era conocido en la antigüedad en la que se manufacturaba mediante la combustión incompleta de materiales orgánicos. Los últimos alótropos conocidos, los fullerenos (C60), fueron descubiertos como subproducto en experimentos realizados con gases moleculares en la década de los 80. Se asemejan a un balón de fútbol, por lo que coloquialmente se les llama futbolenos.
Newton, en 1704, intuyó que el diamante podía ser combustible, pero no se consiguió quemar un diamante hasta 1772 en que Lavoisier demostró que en la reacción de combustión se producía CO2.
Tennant demostró que el diamante era carbono puro en 1797. El isótopo más común del carbono es el 12C; en 1961 este isótopo se eligió para reemplazar al isótopo oxígeno-16 como base de los pesos atómicos, y se le asignó un peso atómico de 12.
Los primeros compuestos de carbono se identificaron en la materia viva a principios del siglo XIX, y por ello el estudio de los compuestos de carbono se llamó química orgánica.

Abundancia y obtención

El carbono no se creó durante el Big Bang porque hubiera necesitado la triple colisión de partículas alfa (núcleos atómicos de helio) y el Universo se expandió y enfrió demasiado rápido para que la probabilidad de que ello aconteciera fuera significativa. Donde sí ocurre este proceso es en el interior de las estrellas (en la fase RH (Rama horizontal)) donde este elemento es abundante, encontrándose además en otros cuerpos celestes como los cometas y en las atmósferas de los planetas. Algunos meteoritos contienen diamantes microscópicos que se formaron cuando el Sistema Solar era aún un disco protoplanetario.
En combinaciones con otros elementos, el carbono se encuentra en la atmósfera terrestre y disuelto en el agua, y acompañado de menores cantidades de calciomagnesio y hierro forma enormes masas rocosas (calizadolomitamármol, etc).
El grafito se encuentra en grandes cantidades en RusiaEstados UnidosMéxicoGroenlandia y la India.
Los diamantes naturales se encuentran asociados a rocas volcánicas (kimberlita y lamproita). Los mayores depósitos de diamantes se encuentran en el África (SudáfricaNamibiaBotsuanaRepública del Congo y Sierra Leona).[cita requerida] Existen además depósitos importantes en CanadáRusiaBrasil y Australia.[cita requerida]

Compuestos inorgánicos

El más importante óxido de carbono es el dióxido de carbono (CO2), un componente minoritario de la atmósfera terrestre (del orden del 0,04 % en peso) producido y usado por los seres vivos (ver ciclo del carbono). En el agua forma trazas de ácido carbónico (H2CO3) —las burbujas de muchos refrescos— pero, al igual que otros compuestos similares, es inestable, aunque a través de él pueden producirse ionescarbonato estables por resonancia. Algunos minerales importantes, como la calcita, son carbonatos.
Los otros óxidos son el monóxido de carbono (CO) y el más raro subóxido de carbono (C3O2). El monóxido se forma durante la combustión incompleta de materias orgánicas y es incoloro e inodoro. Dado que la molécula de CO contiene un enlace triple, es muy polar, por lo que manifiesta una acusada tendencia a unirse a la hemoglobina, formando un nuevo compuesto muy peligroso denominado Carboxihemoglobina, impidiéndoselo al oxígeno, por lo que se dice que es un asfixiante de sustitución. El ion cianuro (CN), tiene una estructura similar y se comporta como los iones haluro.
Con metales, el carbono forma tanto carburos como acetiluros, ambos muy ácidos. A pesar de tener una electronegatividad alta, el carbono puede formar carburos covalentes como es el caso de carburo de silicio (SiC) cuyas propiedades se asemejan a las del diamante.

Isótopos

En 1961 la IUPAC adoptó el isótopo 12C como la base para la masa atómica de los elementos químicos.
El carbono-14 es un radioisótopo con un periodo de semidesintegración de 5730 años que se emplea de forma extensiva en la datación de especímenes orgánicos.
Los isótopos naturales y estables del carbono son el 12C (98,89 %) y el 13C (1,11 %). Las proporciones de estos isótopos en un ser vivo se expresan en variación (±‰) respecto de la referencia VPDB (Vienna Pee Dee Belemnite, fósiles cretácicos de belemnites, en Carolina del Sur). El δC-13 del CO2 de la atmósfera terrestre es −7‰. El carbono fijado por fotosíntesis en los tejidos de las plantas es significativamente más pobre en 13C que el CO2 de la atmósfera.
La mayoría de las plantas presentan valores de δC-13 entre −24 y −34‰. Otras plantas acuáticas, de desierto, de marismas saladas y hierbas tropicales, presentan valores de δC-13 entre −6 y −19‰ debido a diferencias en la reacción de fotosíntesis. Un tercer grupo intermedio constituido por las algas y líquenes presentan valores entre −12 y −23‰. El estudio comparativo de los valores de δC-13 en plantas y organismos puede proporcionar información valiosa relativa a la cadena alimenticia de los seres vivos.

Precauciones

Los compuestos de carbono tienen un amplio rango de toxicidad. El monóxido de carbono, presente en los gases de escape de los motores de combustión y el cianuro (CN) son extremadamente tóxicos para los mamíferos, entre ellos las personas. Los gases orgánicos eteno,etino y metano son explosivos e inflamables en presencia de aire. Por el contrario, muchos otros compuestos no son tóxicos sino esenciales para la vida.
Obrero en la planta de negro de carbón en Sunray, Texas(foto por John Vachon, 1942)
El carbono puro tiene una toxicidad extremadamente baja para los humanos y puede ser manejado e incluso ingerido en forma segura en la forma de grafito o carboncillo. Es resistente a la disolución y ataque químico, incluso en los contenidos acidificados del tracto digestivo. Esto resulta en que una vez que entra a los tejidos corporales lo más probable es que permanezcan allí en forma indefinida. El negro de carbón fue probablemente el primer pigmento en ser usado para hacer tatuajes y se encontró que Ötzi el hombre del hielo tenía tatuajes hechos con carbón que sobrevivieron durante su vida y 5200 años después de su muerte.6Sin embargo, la inhalación en grandes cantidades del polvo de carbón u hollín (negro de carbón) puede ser peligroso, al irritar los tejidos del pulmón y causar una enfermedad conocida como neumoconiosis de los mineros del carbón. De forma similar el polvo de diamante usado como un abrasivo puede ser dañino si se ingiere o inhala. También las micropartículas de carbón producidas por los gases de escape de los motores diésel se pueden acumular en los pulmones al ser inhaladas.7 En estos ejemplos, los efectos dañinos pueden resultar de la contaminación de las partículas de carbón con elementos químicos orgánicos o de metales pesados más que del carbón en sí mismo.
Generalmente el carbono tiene baja toxicidad para casi toda la vida en la Tierra, sin embargo, para algunas criaturas es tóxico - por ejemplo, las nanopartículas de carbón son toxinas mortales para la Drosophila.8
También el carbono se puede quemar vigorosa y brillantemente en la presencia de aire a alta temperatura, como en el caso del Incendio de Windscale, el que fue causado por la repentina liberación de energía Wigner acumulada en el núcleo de grafito. Grandes acumulaciones de carbón, que han permanecido inertes por centenares de millones de años en la ausencia de oxígeno, pueden incendiarse espontáneamente cuando son expuestas al aire, como por ejemplo en los desechos de lasminas de carbón.
Entre la gran variedad de compuestos de carbono se pueden incluir venenos letales tales como la tetradotoxina, la ricina lectina obtenida de las semillas de la planta de aceite de castor (Ricinus communis), el cianuro (CN) y el envenenamiento por monóxido de carbono.

Nombre
Carbono
Número atómico
6
Valencia
2,+4,-4
Configuración electrónica
1s22s22p2
Masa atómica (g/mol)
12,01115
Densidad (g/ml)
2,26
Punto de ebullición (ºC)
4830
Punto de fusión (ºC)  
3727
Descubridor
Los antiguos

Carbono, de símbolo C, es un elemento crucial para la existencia de los organismos vivos, y que tiene muchas aplicaciones industriales importantes. Su número atómico es 6; y pertenece al grupo 14 (o IV A) del sistema periódico.
Propiedades
carbono001
Átomo de carbono.
Las propiedades físicas y químicas del carbono dependen de la estructura cristalina del elemento.
Un gran número de metales se combinan con el elemento a temperaturas elevadas para formar carburos.
Con el oxígeno forma tres compuestos gaseosos: monóxido de carbono, CO, dióxido de carbono, CO2, y subóxido de carbono, C3O2.
Los dos primeros son los más importantes desde el punto de vista industrial.
El carbono es un elemento único en la química porque forma un número de compuestos mayor que la suma total de todos los otros elementos combinados.
El grupo más grande de estos compuestos es el constituido por carbono e hidrógeno. Se estima que se conoce un mínimo de 1.000.000 de compuestos orgánicos y este número crece rápidamente cada año. Aunque la clasificación no es rigurosa, el carbono forma otra serie de compuestos considerados como inorgánicos, en un número mucho menor al de los orgánicos.
Las tres formas de carbono elemental existentes en la naturaleza (diamante, grafito y carbono amorfo) son sólidos con puntos de fusión extremadamente altos, e insolubles en todos los disolventes a temperaturas ordinarias. Las propiedades físicas de las tres formas difieren considerablemente a causa de las diferencias en su estructura cristalina.
En el diamante, el material más duro que se conoce, cada átomo está unido a otros cuatro en una estructura tridimensional, mientras que el grafito consiste en láminas débilmente unidas de átomos dispuestos en hexágonos.
El carbono químicamente puro se prepara por descomposición térmica del azúcar (sacarosa) en ausencia de aire.
El carbono tiene la capacidad única de enlazarse con otros átomos de carbono para formar compuestos en cadena y cíclicos muy complejos. Esta propiedad conduce a un número casi infinito de compuestos de carbono, siendo los más comunes los que contienen carbono e hidrógeno.
carbono002
Pieza de carbono.
Sus primeros compuestos fueron identificados a principios del siglo XIX en la materia viva, y, debido a eso, el estudio de los compuestos de carbono se denominó química orgánica.
A temperaturas normales, el carbono se caracteriza por su baja reactividad. A altas temperaturas, reacciona directamente con la mayoría de los metales formando carburos, y con el oxígeno formando monóxido de carbono (CO) y dióxido de carbono (CO2).
El carbono en forma de coque se utiliza para eliminar el oxígeno de las menas que contienen óxidos de metales, obteniendo así el metal puro. El carbono forma también compuestos con la mayoría de los elementos no metálicos, aunque algunos de esos compuestos, como el tetracloruro de carbono (CCl4), han de ser obtenidos indirectamente.
Estado natural
El carbono es un elemento ampliamente distribuido en la naturaleza, aunque sólo constituye un 0,025% de la corteza terrestre, donde existe principalmente en forma de carbonatos.
Varios minerales, como caliza, dolomita, yeso y mármol, tienen carbonatos.
Todas las plantas y animales vivos están formados de compuestos orgánicos complejos en donde el carbono está combinado con hidrógeno, oxígeno, nitrógeno y otros elementos.
Los vestigios de plantas y animales vivos forman depósitos: de petróleo, asfalto y betún. Los depósitos de gas natural contienen compuestos formados por carbono e hidrógeno.
El elemento libre tiene muchos usos, que incluyen desde las aplicaciones ornamentales del diamante en joyería hasta el pigmento de negro de humo en llantas de automóvil y tintas de imprenta.
Otra forma del carbono, el grafito, se utiliza para crisoles de alta temperatura, electrodos de celda seca y de arco de luz, como puntillas de lápiz y como lubricante. El carbón vegetal, una forma amorfa del carbono, se utiliza como absorbente de gases y agente decolorante.
Los compuestos de carbono tienen muchos usos.
carbono003
Diamante.
El dióxido de carbono se utiliza en la carbonatación de bebidas, en extintores de fuego y, en estado sólido, como enfriador (hielo seco). El monóxido de carbono se utiliza como agente reductor en muchos procesos metalúrgicos. El tetracloruro de carbono y el disulfuro de carbono son disolventes industriales importantes. El freón se utiliza en aparatos de refrigeración. El carburo de calcio se emplea para preparar acetileno; es útil para soldar y cortar metales, así como para preparar otros compuestos orgánicos. Otros carburos metálicos tienen usos importantes como refractarios y como cortadores de metal.
El dióxido de carbono es un componente importante de la atmósfera y la principal fuente de carbono que se incorpora a la materia viva. Por medio de la fotosíntesis, los vegetales convierten el dióxido de carbono en compuestos orgánicos de carbono, que posteriormente son consumidos por otros organismos.
El carbono amorfo se encuentra con distintos grados de pureza en el carbón de leña, el carbón, el coque, el negro de carbono y el negro de humo.
El negro de humo, al que a veces se denomina de forma incorrecta negro de carbono, se obtiene quemando hidrocarburos líquidos como el queroseno, con una cantidad de aire insuficiente, produciendo una llama humeante. El humo u hollín se recoge en una cámara separada. Durante mucho tiempo se utilizó el negro de humo como pigmento negro en tintas y pinturas, pero ha sido sustituido por el negro de carbono, que está compuesto por partículas más finas.
El negro de carbono, llamado también negro de gas, se obtiene por la combustión incompleta del gas natural y se utiliza sobre todo como agente de relleno y de refuerzo en el caucho o hule.
En 1985, los científicos volatilizaron el grafito para producir una forma estable de molécula de carbono consistente en 60 átomos de carbono dispuestos en una forma esférica desigual parecida a un balón de fútbol. La molécula recibió el nombre de buckminsterfulereno ('pelota de Bucky' para acortar) en honor a R. Buckminster Fuller, el inventor de la cúpula geodésica. La molécula podría ser común en el polvo interestelar.
Aplicaciones científicas
El isótopo del carbono más común es el carbono 12; en 1961 se eligió este isótopo para sustituir al isótopo oxígeno 16 como medida patrón para las masas atómicas, y se le asignó la masa atómica 12.
Los isótopos carbono 13 y carbono 14 se usan como trazadores (consultar  Trazador isotópico) en la investigación bioquímica. El carbono 14 se utiliza también en la técnica llamada método del carbono 14 que permite estimar la edad de los fósiles y otras materias orgánicas. Este isótopo es producido continuamente en la atmósfera por los rayos cósmicos, y se incorpora a toda la materia viva.
Como el carbono 14 se desintegra con un periodo de semidesintegración de 5.760 años, la proporción entre el carbono 14 y el carbono 12 en un espécimen dado, proporciona una medida de su edad aproximada.
Configuración electrónica
El átomo de carbono constituye el elemento esencial de toda la química orgánica, y debido a que las propiedades químicas de elementos y compuestos son consecuencia de las características electrónicas de sus átomos y de sus moléculas, es necesario considerar la configuración electrónica del átomo de carbono para poder comprender su singular comportamiento químico.
Se trata del elemento de número atómico Z = 6. Por tal motivo su configuración electrónica en el estado fundamental o no excitado es 1s2 2s2 2p2. La existencia de cuatro electrones en la última capa sugiere la posibilidad bien de ganar otros cuatro convirtiéndose en el ion C4- cuya configuración electrónica coincide con la del gas noble Ne, bien de perderlos pasando a ion C4+ de configuración electrónica idéntica a la del He.
En realidad una pérdida o ganancia de un número tan elevado de electrones indica una dosis de energía elevada, y el átomo de carbono opta por compartir sus cuatro electrones externos con otros átomos mediante enlaces covalentes. Esa cuádruple posibilidad de enlace que presenta el átomo de carbono se denomina tetravalencia.
El carbono frente al silicio
Cabe preguntarse si la situación del carbono es singular o si por el contrario algún otro elemento participa de sus mismas propiedades. Observando el sistema periódico se advierte que el silicio está situado en el mismo grupo justo debajo del carbono y con idéntica configuración electrónica externa.
¿Por qué razón la vida se ha desarrollado sobre los compuestos del carbono y no sobre los del silicio? ¿Por qué los derivados del silicio son tan poco numerosos frente a los del carbono?
 La existencia en el silicio de ocho electrones internos adicionales respecto del carbono hace que los electrones externos o de valencia responsables del enlace químico estén más alejados del núcleo y, por tanto, atraídos por él más débilmente. Ello se traduce en que la fuerza de los enlaces del silicio es comparativamente menor; particularmente lo es el enlace Si-Si, lo que le convierte en más reactivo, es decir, menos estable químicamente.
No obstante, el silicio cristaliza formando una red tridimensional semejante a la del diamante, y sus derivados constituyen el 87 % de la composición de la corteza terrestre. Su combinación con el oxígeno origina la sílice o cuarzo (SiO2). El carácter francamente polar de esta unión da lugar a estructuras reticulares o redes cristalinas que por sus propiedades se parecen enormemente a las de los sólidos iónicos.
La química de compuestos del carbono
El átomo de carbono, debido a su configuración electrónica, presenta una importante capacidad de combinación. Los átomos de carbono pueden unirse entre sí formando estructuras complejas y enlazarse a átomos o grupos de átomos que confieren a las moléculas resultantes propiedades específicas. (Ver: Grupos funcionales)
La enorme diversidad en los compuestos del carbono hace de su estudio químico una importante área del conocimiento puro y aplicado de la ciencia actual.
Durante mucho tiempo la materia constitutiva de los seres vivos estuvo rodeada de no pocas incógnitas. Frente a la materia mineral presentaba, entre otras, una característica singular, su capacidad de combustión. Parecía como si los únicos productos capaces de arder hubieran de proceder de la materia viviente.
En los albores de la química como ciencia se advirtió, además, que si bien la materia procedente de organismos vivos podía degradarse en materia mineral por combustión u otros procesos químicos, no era posible de ninguna manera llevar a cabo en el laboratorio el proceso inverso.
Argumentos de este estilo llevaron a Berzelius, a comienzos del siglo XIX, a sugerir la existencia de dos tipos de materia en la naturaleza, la materia orgánica o materia propia de los seres vivos, y la materia inorgánica.
Para justificar las diferencias entre ambas se admitió que la materia orgánica poseía una composición especial y que su formación era debida a la intervención de una influencia singular o «fuerza vital» exclusiva de los seres vivos y cuya manipulación no era posible en el laboratorio.
La crisis de este planteamiento, denominado vitalismo, llevó consigo el rápido desarrollo de la química de la materia orgánica en los laboratorios, al margen de esa supuesta «fuerza vital».
En la actualidad, superada ya la vieja clasificación de Berzelius, se denomina química orgánica a la química de los derivados del carbono e incluye el estudio de los compuestos en los que dicho elemento constituye una parte esencial, aunque muchos de ellos no tengan relación alguna con la materia viviente.
HIDROCARBUROS: ASPECTOS ESTRUCTURALES
La geometría de sus moléculas.
Los hidrocarburos son los derivados del carbono más sencillos. Resultan de la unión únicamente de átomos de carbono con átomos de hidrógeno y de átomos de carbono entre sí formando cadenas que pueden ser abiertas o cerradas y cuyos «eslabones» pueden estar unidos por enlaces simples o por enlaces múltiples. Aquellos hidrocarburos que presentan únicamente enlaces simples reciben el nombre de hidrocarburos saturados (alcanos).
El representante más sencillo de los hidrocarburos saturados es el metano CH4; no obstante, el etano C2H6 da una mejor idea de las características de este tipo de hidrocarburos.
grupos_funcionales_image006grupos_funcionales_image008
Etano (un enlace carbono-carbono). 

La molécula de etano está compuesta por dos átomos de carbono y seis átomos de hidrógeno que se unen entre sí mediante enlaces covalentes sencillos. Desde un punto de vista puramente geométrico se puede representar la molécula de etano mediante dos tetraedros contiguos y opuestos por uno de sus vértices, en donde los dos átomos de carbono ocupan los centros de los respectivos tetraedros, y los de hidrógeno los vértices libres.
grupos_funcionales_image013
Eteno, dos carbonos con enlace doble.
Los hidrocarburos no saturados se caracterizan, desde el punto de vista de su estructura molecular, por la presencia de enlaces dobles (alquenos) o triples (alquinos). La molécula de eteno o etileno está formada por dos átomos de carbono unidos por un enlace doble; mediante sus otros dos enlaces restantes cada átomo de carbono se une a otros tantos átomos de hidrógeno.
Efectos del Carbono sobre la salud
El carbono elemental es de una toxicidad muy baja. Los datos presentados aquí de peligros para la salud están basados en la exposición al negro de carbono, no carbono elemental. La inhalación continuada de negro de carbón puede resultar en daños temporales o permanentes a los pulmones y el corazón. 
Se ha encontrado pneumoconiosis en trabajadores relacionados con la producción de negro de carbón. También se ha dado parte de afecciones cutáneas tales como inflamación de los folículos pilosos, y lesiones de la mucosa bucal debidos a la exposición cutánea.
Carcinogenicidad: El negro de carbón ha sido incluido en la lista de la Agencia Internacional de Investigación del Cáncer  (AIIC) dentro del grupo 3 (agente no clasificable con respecto a su carcinogenicidad en humanos).





No hay comentarios:

Publicar un comentario