PROBABILIDAD
Idea intuitiva
Número, entre 0 y 1, asociado con la verosimilitud de que ocurra un suceso, 0 cuando estamos seguros que el suceso no va a ocurrir y 1 cuando estamos seguros que sí va a ocurrir. El problema es ¿cómo asignar ese número en situaciones de incertidumbre?
a) A veces se estima por la frecuencia relativa. P.e. una manera de aproximarnos a la probabilidad de que una intervención quirúrgica arriesgada tenga éxito es consultar el registro de las intervenciones quirúrgicas realizadas sobre pacientes similares, si de las últimas 10, ha sido un éxito en 8, la frecuencia relativa es 8/10=0,8 se parecerá a esa probabilidad.
La frecuencia relativa cambia, en el ejemplo anterior si el registro, en lugar de 10 pacientes, tuviera 11, la frecuencia relativa sería necesariamente distinta (8/11 ó 9/11), pero hay una ley empírica que establece que cuando el "número de ensayos" (pacientes, en el ejemplo) es suficientemente grande, la frecuencia relativa se estabiliza. A veces, se define la probabilidad como el límite de la frecuencia relativa. ¿Cómo saber, en cada caso, si el "número de ensayos" es suficientemente grande? Una parte de la estadística tiene que ver con este problema.
La gráfica muestra la evolución de la frecuencia relativa del resultado "cara 1" en 4 series de 100 tiradas de un dado.
Se observa que la frecuencia relativa oscila, que la amplitud de las oscilaciones va decreciendo a medida que aumenta el número de tiradas y que todas las series tienden a estabilizarse a la misma altura, también que 100 no es un número "suficientemente grande" para que la frecuencia relativa ya esté estabilizada (los valores finales de las 4 series varían entre 0,17 y 0,21).
b) Hay situaciones en que se puede calcular: si todos los resultados del experimento son igualmente probables, entonces la probabilidad se define (definición clásica o de Laplace) como el cociente entre el número de casos favorables y el número de casos totales.
La probabilidad de que el resultado de tirar un dado sea un uno, se calcularía de esta forma. Compárese el resultado 1/6 obtenido así con la gráfica anterior.
La teoría de la probabilidad se desarrolló originalmente a partir de ciertos problemas planteados en el contexto de juegos de azar. Inicialmente, no existía una teoría axiomática bien definida y las definiciones iniciales de probabilidad se basaron en la idea intuitiva de un cociente de ocurrencias:
donde A es un suceso cualquiera y:
Este tipo de definiciones si bien permitieron desarrollar un gran número de propiedades, no permitían deducir todos los teoremas y resultados importantes que hoy forman parte de la teoría de la probabilidad. De hecho el resultado anterior se puede demostrar rigurosamente dentro del enfoque axiomático de la teoría de la probabilidad, bajo ciertas condiciones.
La primera axiomatización completa se debió a Andréi Kolmogórov (quien usó dicho enfoque por ejemplo para deducir su "ley 0-1 para sucesos cola" y otros resultados relacionados con la convergencia de sucesiones aleatorias). La definición axiomática de la probabilidad se basa en resultados de la teoría de la medida y en formalizaciones de la idea de independencia probabilística. En este enfoque se parte de un espacio de medida normalizada donde es un conjunto llamado espacio de sucesos (según el tipo de problema puede ser un conjunto finito, numerable o no-numerable), es una σ-álgebra de subconjuntos de y es una medida normalizada (es decir, ). Los sucesos posibles se consideran como subconjuntos S de eventos elementales posibles: y la probabilidad de que cada suceso viene dada por la medida de dicho conjunto:
La interpretación de esta probabilidad es la frecuencia promedio con la que aparece dicho suceso si se considera una elección de muestras aleatorias sobre .
La definición anterior es complicada de representar matemáticamente ya que debiera ser infinito. Otra manera de definir la probabilidad es de forma axiomática esto estableciendo las relaciones o propiedades que existen entre los conceptos y operaciones que la componen.
|
viernes, 28 de abril de 2017
Bioestadística Clinica
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario