Función lineal
es un modelo probabilístico, que también se puede escribir
A la variable Y se la denomina variable dependiente y a X independiente.
Ejemplo 2: Se quiere estudiar la asociación entre consumo de sal y tensión arterial. A una serie de voluntarios se les administra distintas dosis de sal en su dieta y se mide su tensión arterial un tiempo después.
Variable X: gr. de sal diarios (no aleatoria)Variable Y: presión arterial en mm. de Hg asumimos que para cada valor de X, Y no está determinada, sino que
a0 presión arterial media de los que no toman nada de sal.a1 cambio de la media de presión arterial por aumentar 1 gr el consumo de sal, asumiendo que es constante. Si fuera 0, quiere decir que la presión no cambia con el consumo de sal, por tanto ambas variables son independientes, un valor distinto de cero indica que están correlacionadas y su magnitud mide la fuerza de la asociación.
A partir de una muestra aleatoria, la teoría estadística permite:
i) estimar los coeficientes a i del modelo (hay dos procedimientos: mínimos cuadrados y máxima verosimilitud que dan el mismo resultado). ii) estimar la varianza de las variables Y|xi llamada cuadrados medios del error y representada por s2 o MSE. A su raíz cuadrada se le llama error estándar de la estimación. iii) conocer la distribución muestral de los coeficientes estimados, tanto su forma (t) como su error estándar, que permite hacer estimación por intervalos como contrastes de hipótesis sobre ellos.
86,371 presión arterial media sin nada de sal.
6,335 aumento de presión por cada gr de sal; como es distinto de 0 indica correlación. La pregunta es ¿podría ser 0 en la población? En términos de contrastes de hipótesis
H0 : a1 = 0
H1 : a1 ¹ 0
según iii)
se rechaza H0.
Para hacer estimación por intervalos de la fuerza de la asociación o el efecto
en este ejemplo para a 1 al 95%
6,335 ± 2,776x0,840 = (4,004 8,666)
y del mismo modo se ha calculado en la salida anterior, aunque en general tiene menos interés, para a0
Función lineal
Introducción: Recordemos que una función es una correspondencia entre los elementos de un conjunto de partida, llamado Dominio, y los elementos de un conjunto de llegada, llamado Codominio, de forma tal que a cada elemento del dominio le corresponde uno, y solo uno, en el codominio.
Definición: Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio son también todos los números reales, y cuya expresión analítica es un polinomio de primer grado.
Definición f: R —> R / f(x) = a.x+b donde a y b son números reales, es una función lineal.
Este último renglón se lee: f de R en R tal que f de equis es igual a a.x+b
Por ejemplo, son funciones lineales f: f(x) = 2x+5 , g: g(x) = -3x+7, h: h(x) = 4
Definición: Las funciones lineales son polinomios de primer grado. ver grafica ejes
Recordemos que los polinomios de primer grado tienen la variable elevada al exponente 1. Es habitual no escribir el exponente cuando este es 1.
Ejemplos de funciones lineales: a(x) = 2x+7 b(x) = -4x+3 f(x) = 2x + 5 + 7x - 3
De estas funciones, vemos que la f no está reducida y ordenada como las demás. Podemos reducir términos semejantes para que la expresión quede de una forma mas sencilla, f(x) = 9x + 2
Tambien recordemos que hemos convenido que cuando no establecemos en forma explicita el dominio y el codominio de una función, supondremos que es el mayor conjunto posible en cada caso.
Por ejemplo, si hablamos de la función f, de dominio real y codominio real, tal que f(x)= 2x-6, anotaremos f: R ——-> R / f(x) = 2x-6 Siendo el dominio todos los números reales, R, y el codominio también, todos los números reales, R.
Esto se lee " f de R en R tal que f de x es igual a 2x-6"
Vamos a graficar esta función, que tal cual lo vimos en la definición, es una función lineal por ser de primer grado. Para graficarla haremos una tabla de valores.
f: R ——> R / f(x) = 2x-6
Le vamos dando valores a "x". ¿Que valores le podemos dar? Cualquiera que este dentro del dominio.
Por ejemplo, si x = 5 , entonces f(x) pasa a ser f(5), que es f(5) = 2.(5)-6 f(5) = 4
Entonces al 5 le corresponde el 4. Nuestro punto es el (5,4).
|
viernes, 28 de abril de 2017
Bioestadística Clínica
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario