Cinco dimensiones [ editar ]
La siguiente tabla muestra los grupos de reflexión de cinco dimensiones (excluyendo aquellos que son grupos de reflexión de dimensiones inferiores), al enumerarlos como grupos de Coxeter . Existen grupos quirales relacionados para cada uno con la mitad del orden, y se pueden representar mediante la notación de Coxeter del corchete con un exponente '+', por ejemplo [3,3,3,3] + tiene cuatro puntos de giro de 3 veces y orden de simetría 360 .
Grupo de cooxeter /notación | Diagramas de cooxeter | Orden | Politopos regulares / prismáticos relacionados | ||
---|---|---|---|---|---|
Un 5 | [3,3,3,3] | 720 | 5-simplex | ||
A 5 × 2 | [[3,3,3,3]] | 1440 | Compuesto dual 5-simplex | ||
BC 5 | [4,3,3,3] | 3840 | 5-cubo , 5-orthoplex | ||
D 5 | [3 2,1,1 ] | 1920 | 5-demicube | ||
D 5 × 2 | <[3,3,3 1,1]> | = | 3840 | ||
A 4 × A 1 | [3,3,3,2] | 240 | Prisma de 5 celdas | ||
A 4 × A 1 × 2 | [[3,3,3], 2] | 480 | |||
BC 4 × A 1 | [4,3,3,2] | 768 | prisma de tesseract | ||
F 4 × A 1 | [3,4,3,2] | 2304 | Prisma de 24 celdas | ||
F 4 × A 1 × 2 | [[3,4,3], 2] | 4608 | |||
H 4 × A 1 | [5,3,3,2] | 28800 | Prisma de 600 celdas o 120 celdas | ||
D 4 × A 1 | [3 1,1,1 , 2] | 384 | Prisma demitesseract | ||
A 3 × A 2 | [3,3,2,3] | 144 | Duoprismo | ||
A 3 × A 2 × 2 | [[3,3], 2,3] | 288 | |||
A 3 × BC 2 | [3,3,2,4] | 192 | |||
A 3 × H 2 | [3,3,2,5] | 240 | |||
A 3 × G 2 | [3,3,2,6] | 288 | |||
A 3 × I 2 (p) | [3,3,2, p] | 48p | |||
BC 3 × A 2 | [4,3,2,3] | 288 | |||
BC 3 × BC 2 | [4,3,2,4] | 384 | |||
BC 3 × H 2 | [4,3,2,5] | 480 | |||
BC 3 × G 2 | [4,3,2,6] | 576 | |||
BC 3 × I 2 (p) | [4,3,2, p] | 96p | |||
H 3 × A 2 | [5,3,2,3] | 720 | |||
H 3 × BC 2 | [5,3,2,4] | 960 | |||
H 3 × H 2 | [5,3,2,5] | 1200 | |||
H 3 × G 2 | [5,3,2,6] | 1440 | |||
H 3 × I 2 (p) | [5,3,2, p] | 240p | |||
A 3 × A 1 2 | [3,3,2,2] | 96 | |||
BC 3 × A 1 2 | [4,3,2,2] | 192 | |||
H 3 × A 1 2 | [5,3,2,2] | 480 | |||
A 2 2 × A 1 | [3,2,3,2] | 72 | prisma de duoprismo | ||
A 2 × BC 2 × A 1 | [3,2,4,2] | 96 | |||
A 2 × H 2 × A 1 | [3,2,5,2] | 120 | |||
A 2 × G 2 × A 1 | [3,2,6,2] | 144 | |||
BC 2 2 × A 1 | [4,2,4,2] | 128 | |||
BC 2 × H 2 × A 1 | [4,2,5,2] | 160 | |||
BC 2 × G 2 × A 1 | [4,2,6,2] | 192 | |||
H 2 2 × A 1 | [5,2,5,2] | 200 | |||
H 2 × G 2 × A 1 | [5,2,6,2] | 240 | |||
G 2 2 × A 1 | [6,2,6,2] | 288 | |||
I 2 (p) × I 2 (q) × A 1 | [p, 2, q, 2] | 8pq | |||
A 2 × A 1 3 | [3,2,2,2] | 48 | |||
BC 2 × A 1 3 | [4,2,2,2] | 64 | |||
H 2 × A 1 3 | [5,2,2,2] | 80 | |||
G 2 × A 1 3 | [6,2,2,2] | 96 | |||
I 2 (p) × A 1 3 | [p, 2,2,2] | 16p | |||
A 1 5 | [2,2,2,2] | 32 | 5- orotopo | ||
A 1 5 × (2 ! ) | [[2], 2,2,2] | = | 64 | ||
A 1 5 × (2! × 2 ! ) | [[2]], 2, [2], 2] | = | 128 | ||
A 1 5 × (3 ! ) | [3 [2,2], 2,2] | = | 192 | ||
A 1 5 × (3! × 2 ! ) | [3 [2,2], 2, [[2]] | = | 384 | ||
A 1 5 × (4 ! ) | [3,3 [2,2,2], 2]] | = | 768 | ||
A 1 5 × (5 ! ) | [3,3,3 [2,2,2,2]] | = | 3840 |
Seis dimensiones [ editar ]
La siguiente tabla muestra los grupos de reflexión de seis dimensiones (excluyendo aquellos que son grupos de reflexión de dimensiones inferiores), al enumerarlos como grupos de Coxeter . Existen grupos rotativos puros relacionados para cada uno con la mitad del orden, y se pueden representar mediante la notación de Coxeter del corchete con un exponente '+', por ejemplo [3,3,3,3,3] + tiene cinco puntos de giro de 3 veces y Orden de simetría 2520.
Grupo de cooxeter | Diagrama de cooxeter | Orden | Politopos regulares / prismáticos relacionados | |
---|---|---|---|---|
Un 6 | [3,3,3,3,3] | 5040 (7!) | 6-simplex | |
A 6 × 2 | [[3,3,3,3,3]] | 10080 (2 × 7!) | Compuesto dual 6-simplex | |
BC 6 | [4,3,3,3,3] | 46080 (2 6 × 6!) | 6-cubo , 6-orthoplex | |
D 6 | [3,3,3,3 1,1] | 23040 (2 5 × 6!) | 6-demicube | |
E 6 | [3,3 2,2 ] | 51840 (72 × 6!) | 1 22 , 2 21 | |
A 5 × A 1 | [3,3,3,3,2] | 1440 (2 × 6!) | Prisma 5-simplex | |
BC 5 × A 1 | [4,3,3,3,2] | 7680 (2 6 × 5!) | Prisma de 5 cubos | |
D 5 × A 1 | [3,3,3 1,1 , 2] | 3840 (2 5 × 5!) | Prisma 5-demicube | |
A 4 × I 2 (p) | [3,3,3,2, p] | 240p | Duoprismo | |
BC 4 × I 2 (p) | [4,3,3,2, p] | 768p | ||
F 4 × I 2 (p) | [3,4,3,2, p] | 2304p | ||
H 4 × I 2 (p) | [5,3,3,2, p] | 28800p | ||
D 4 × I 2 (p) | [3,3 1,1 , 2, p] | 384p | ||
A 4 × A 1 2 | [3,3,3,2,2] | 480 | ||
BC 4 × A 1 2 | [4,3,3,2,2] | 1536 | ||
F 4 × A 1 2 | [3,4,3,2,2] | 4608 | ||
H 4 × A 1 2 | [5,3,3,2,2] | 57600 | ||
D 4 × A 1 2 | [3,3 1,1 , 2,2] | 768 | ||
A 3 2 | [3,3,2,3,3] | 576 | ||
A 3 × BC 3 | [3,3,2,4,3] | 1152 | ||
A 3 × H 3 | [3,3,2,5,3] | 2880 | ||
BC 3 2 | [4,3,2,4,3] | 2304 | ||
BC 3 × H 3 | [4,3,2,5,3] | 5760 | ||
H 3 2 | [5,3,2,5,3] | 14400 | ||
A 3 × I 2 (p) × A 1 | [3,3,2, p, 2] | 96p | Prisma duoprismo | |
BC 3 × I 2 (p) × A1 | [4,3,2, p, 2] | 192p | ||
H 3 × I 2 (p) × A 1 | [5,3,2, p, 2] | 480p | ||
A 3 × A 1 3 | [3,3,2,2,2] | 192 | ||
BC 3 × A 1 3 | [4,3,2,2,2] | 384 | ||
H 3 × A 1 3 | [5,3,2,2,2] | 960 | ||
I 2 (p) × I 2 (q) × I2 (r) | [p, 2, q, 2, r] | 8pqr | Triaprismo | |
I 2 (p) × I 2 (q) × A1 2 | [p, 2, q, 2,2] | 16pq | ||
I 2 (p) × A 1 4 | [p, 2,2,2,2] | 32p | ||
A 1 6 | [2,2,2,2,2] | 64 | 6- ortotopo |
Siete dimensiones [ editar ]
La siguiente tabla muestra los grupos de reflexión de siete dimensiones (excluyendo aquellos que son grupos de reflexión de dimensiones inferiores), al enumerarlos como grupos de Coxeter . Existen grupos quirales relacionados para cada uno con la mitad del orden, definidos por un número par de reflexiones, y se pueden representar mediante la notación de Coxeter de corchete con un exponente '+', por ejemplo [3,3,3,3,3,3] + tiene seis puntos de giro de 3 veces y orden de simetría 20160.
Grupo de cooxeter | Diagrama de cooxeter | Orden | Polytopes relacionados | |
---|---|---|---|---|
Un 7 | [3,3,3,3,3,3] | 40320 (8!) | 7-simplex | |
A 7 × 2 | [[3,3,3,3,3,3]] | 80640 (2 × 8!) | Compuesto dual 7-simplex | |
BC 7 | [4,3,3,3,3,3] | 645120 (2 7 × 7!) | 7-cubo , 7-orthoplex | |
D 7 | [3,3,3,3,3 1,1 ] | 322560 (2 6 × 7!) | 7-demicube | |
E 7 | [3,3,3,3 2,1 ] | 2903040 (8 × 9!) | 3 21 , 2 31 , 1 32 | |
A 6 × A 1 | [3,3,3,3,3,2] | 10080 (2 × 7!) | ||
BC 6 × A 1 | [4,3,3,3,3,2] | 92160 (2 7 × 6!) | ||
D 6 × A 1 | [3,3,3,3 1,1 , 2] | 46080 (2 6 × 6!) | ||
E 6 × A 1 | [3,3,3 2,1 , 2] | 103680 (144 × 6!) | ||
A 5 × I 2 (p) | [3,3,3,3,2, p] | 1440p | ||
BC 5 × I 2 (p) | [4,3,3,3,2, p] | 7680p | ||
D 5 × I 2 (p) | [3,3,3 1,1 , 2, p] | 3840p | ||
A 5 × A 1 2 | [3,3,3,3,2,2] | 2880 | ||
BC 5 × A 1 2 | [4,3,3,3,2,2] | 15360 | ||
D 5 × A 1 2 | [3,3,3 1,1 , 2,2] | 7680 | ||
A 4 × A 3 | [3,3,3,2,3,3] | 2880 | ||
A 4 × BC 3 | [3,3,3,2,4,3] | 5760 | ||
A 4 × H 3 | [3,3,3,2,5,3] | 14400 | ||
BC 4 × A 3 | [4,3,3,2,3,3] | 9216 | ||
BC 4 × BC 3 | [4,3,3,2,4,3] | 18432 | ||
BC 4 × H 3 | [4,3,3,2,5,3] | 46080 | ||
H 4 × A 3 | [5,3,3,2,3,3] | 345600 | ||
H 4 × BC 3 | [5,3,3,2,4,3] | 691200 | ||
H 4 × H 3 | [5,3,3,2,5,3] | 1728000 | ||
F 4 × A 3 | [3,4,3,2,3,3] | 27648 | ||
F 4 × BC 3 | [3,4,3,2,4,3] | 55296 | ||
F 4 × H 3 | [3,4,3,2,5,3] | 138240 | ||
D 4 × A 3 | [3 1,1,1 , 2,3,3] | 4608 | ||
D 4 × BC 3 | [3,3 1,1 , 2,4,3] | 9216 | ||
D 4 × H 3 | [3,3 1,1 , 2,5,3] | 23040 | ||
A 4 × I 2 (p) × A 1 | [3,3,3,2, p, 2] | 480p | ||
BC 4 × I 2 (p) × A 1 | [4,3,3,2, p, 2] | 1536p | ||
D 4 × I 2 (p) × A 1 | [3,3 1,1 , 2, p, 2] | 768p | ||
F 4 × I 2 (p) × A 1 | [3,4,3,2, p, 2] | 4608p | ||
H 4 × I 2 (p) × A 1 | [5,3,3,2, p, 2] | 57600p | ||
A 4 × A 1 3 | [3,3,3,2,2,2] | 960 | ||
BC 4 × A 1 3 | [4,3,3,2,2,2] | 3072 | ||
F 4 × A 1 3 | [3,4,3,2,2,2] | 9216 | ||
H 4 × A 1 3 | [5,3,3,2,2,2] | 115200 | ||
D 4 × A 1 3 | [3,3 1,1 , 2,2,2] | 1536 | ||
A 3 2 × A 1 | [3,3,2,3,3,2] | 1152 | ||
A 3 × BC 3 × A 1 | [3,3,2,4,3,2] | 2304 | ||
A 3 × H 3 × A 1 | [3,3,2,5,3,2] | 5760 | ||
BC 3 2 × A 1 | [4,3,2,4,3,2] | 4608 | ||
BC 3 × H 3 × A 1 | [4,3,2,5,3,2] | 11520 | ||
H 3 2 × A 1 | [5,3,2,5,3,2] | 28800 | ||
A 3 × I 2 (p) × I 2 (q) | [3,3,2, p, 2, q] | 96pq | ||
BC 3 × I 2 (p) × I 2 (q) | [4,3,2, p, 2, q] | 192pq | ||
H 3 × I 2 (p) × I 2 (q) | [5,3,2, p, 2, q] | 480pq | ||
A 3 × I 2 (p) × A 1 2 | [3,3,2, p, 2,2] | 192p | ||
BC 3 × I 2 (p) × A 1 2 | [4,3,2, p, 2,2] | 384p | ||
H 3 × I 2 (p) × A 1 2 | [5,3,2, p, 2,2] | 960p | ||
A 3 × A 1 4 | [3,3,2,2,2,2] | 384 | ||
BC 3 × A 1 4 | [4,3,2,2,2,2] | 768 | ||
H 3 × A 1 4 | [5,3,2,2,2,2] | 1920 | ||
I 2 (p) × I 2 (q) × I 2 (r) × A 1 | [p, 2, q, 2, r, 2] | 16pqr | ||
I 2 (p) × I 2 (q) × A 1 3 | [p, 2, q, 2,2,2] | 32pq | ||
I 2 (p) × A 1 5 | [p, 2,2,2,2,2] | 64p | ||
A 1 7 | [2,2,2,2,2,2] | 128 |
[2,2,2,2,2,2,2] | 256 |
No hay comentarios:
Publicar un comentario