FÍSICA ATÓMICA Y NUCLEAR .-
Tecnología nuclear
Armas nucleares. Un arma es todo instrumento, medio o máquina que se destina a atacar o a defenderse. Según tal definición, existen dos categorías de armas nucleares:
- Aquellas que utilizan la energía nuclear de forma directa para el ataque o la defensa, es decir, los explosivos que usan la fisión o la fusión.
- Aquellas que utilizan la energía nuclear para su propulsión, pudiendo a su vez utilizar o no munición que utilice la energía nuclear para su detonación. En esta categoría se pueden citar los buques de guerra de propulsión nuclear (cruceros, portaaviones, submarinos, bombarderos, etc.).
Bomba atómica. Existen dos formas básicas de utilizar la energía nuclear desprendida por reacciones en cadena descontroladas de forma explosiva: la fisión y la fusión.
- Bomba de fisión: El 16 de julio de 1945 se produjo la primera explosión de una bomba de fisión creada por el ser humano: La Prueba Trinity.
Existen dos tipos básicos de bombas de fisión: utilizando uranio altamente enriquecido (enriquecimiento superior al 90% en 235U) o utilizando plutonio. Ambos tipos se fundamentan en una reacción de fisión en cadena descontrolada y solo se han empleado en un ataque real en Hiroshima y Nagasaki, al final de la Segunda Guerra Mundial.
Para que este tipo de bombas funcionen es necesario utilizar una cantidad del elemento utilizado superior a la Masa crítica. Suponiendo una riqueza en el elemento del 100%, eso supone 52 kg de 235U o 10 kg de 239Pu. Para su funcionamiento se crean 2 o más partes subcríticas que se unen mediante un explosivo químico convencional de forma que se supere la masa crítica.
- Generar suficiente cantidad del elemento físil a utilizar, ya sea uranio enriquecido o plutonio puro.
- Alcanzar un diseño en el que el material utilizado en la bomba no sea destruido por la primera explosión antes de alcanzar la criticidad.
El rango de potencia de estas bombas se sitúa entre aproximadamente el equivalente a una tonelada de TNT hasta los 500.000 kilotones.
Bomba de fusión: Tras el primer ensayo exitoso de una bomba de fisión por la Unión Soviética en 1949 se desarrolló una segunda generación de bombas nucleares que utilizaban la fusión. Se la llamó bomba termonuclear, bomba H o bomba de hidrógeno. Este tipo de bomba no se ha utilizado nunca contra ningún objetivo real. El llamado diseño Teller-Ullam (o secreto de la bomba H) separa ambas explosiones en dos fases.
Este tipo de bombas pueden ser miles de veces más potentes que las de fisión. En teoría no existe un límite a la potencia de estas bombas, siendo la de mayor potencia explotada la bomba del Zar, de una potencia superior a los 50 megatones.
Las bombas de hidrógeno utilizan una bomba primaria de fisión que genera las condiciones de presión y temperatura necesarias para comenzar la reacción de fusión de núcleos de hidrógeno. Los únicos productos radiactivos que generan estas bombas son los producidos en la explosión primaria de fisión, por lo que a veces se le ha llamado bomba nuclear limpia. El extremo de esta característica son las llamadas bombas de neutrones o bomba N, que minimizan la bomba de fisión primaria, logrando un mínimo de productos de fisión. Estas bombas además se diseñaron de tal modo que la mayor cantidad de energía liberada sea en forma de neutrones, con lo que su potencia explosiva es la décima parte que una bomba de fisión. Fueron concebidas como armas anti-tanque, ya que al penetrar los neutrones en el interior de los mismos, matan a sus ocupantes por las radiaciones
Generación de electricidad
Probablemente, la aplicación práctica más conocida de la energía nuclear es la generación de energía eléctrica para su uso civil, en particular mediante la fisión de uranio enriquecido. Para ello se utilizan reactores en los que se hace fisionar o fusionar un combustible. El funcionamiento básico de este tipo de instalaciones industriales es similar a cualquier otra central térmica, sin embargo poseen características especiales con respecto a las que usan combustibles fósiles:
- Se necesitan medidas de seguridad y control mucho más estrictas. En el caso de los reactores de cuarta generación estas medidas podrían ser menores, mientras que en la fusión se espera que no sean necesarias.
- La cantidad de combustible necesario anualmente en estas instalaciones es varios órdenes de magnitud inferior al que precisan las térmicas convencionales.
- Las emisiones directas de C02 y NOx en la generación de electricidad, principales gases de efecto invernadero de origen antrópico, son nulas; aunque indirectamente, en procesos secundarios como la obtención de mineral y construcción de instalaciones, sí se producen emisiones.
Regulación nuclear
La regulación nuclear puede separarse en cuatro grandes grupos:
- 1. Funciones de los reguladores nacionales,
- 2. Residuos,
- 3. Seguridad y
- 4. Protección radiológica.
Las bases científicas de toda la regulación internacional existente se fundan en estudios propios y recopilaciones llevadas a cabo por la CIPR, UNSCEAR o el NAS/BEIR americano. Además de estos, existen una serie de agencias de investigación y desarrollo en seguridad, como pueden ser la AEN o el EPRI. A partir de todas ellas, existen dos organismos internacionales que desarrollan las bases para la legislación: el OIEA (a nivel internacional) y EURATOM (en Europa).
También existen algunos organismos nacionales, que emiten documentación dedicada a cada uno de los campos, que sirven de guía a otros países. Así ocurre por ejemplo con la NCRP, la NRC o la EPA americanas, la HPA inglesa (antiguamente NRPB) o el CEA francés.
Además de estas regulaciones específicas, existen otras leyes y acuerdos que tienen en mayor o menor medida relación con la energía nuclear. Así por ejemplo las leyes de calidad del agua o la convención OSPAR. Aunque en el Protocolo de Kyoto, que trata sobre las industrias que emiten gases de efecto invernadero, no se menciona la energía nuclear, sí aparece en otros documentos referentes al calentamiento global antropogénico. Así, en los acuerdos de Bonn de 2001,52 se establecieron los mecanismos de compraventa de emisiones de gases de efecto invernadero y los mecanismos de intercambio de tecnologías, excluyendo ambos explícitamente a la energía nuclear. De este modo, no se pueden reducir las cuotas de emisión de los países altamente industrializados mediante la venta de tecnología nuclear a países menos desarrollados, ni se pueden vender las cuotas de emisiones a países que funden sus bajas emisiones en la energía nuclear. El IPCC, sin embargo, sí recomienda en su cuarto informe el uso de la energía nuclear como una de las únicas formas (junto a las energías renovables y la eficiencia energética) de reducir la emisión de gases de efecto invernadero
No hay comentarios:
Publicar un comentario