La varianza (S2) mide la dispersión de los datos de una muestra (X1,X2,…,XN) respecto a la media (x), calculando la media de los cuadrados de las distancias de todos los datos.
Al elevar las diferencias al cuadrado se garantiza que las diferencias absolutas respecto a la media no se anulan entre si. Además, resaltan los valores alejados.
Siempre se cumple que la varianza es mayor o igual que cero (S2 ≥ 0). La varianza es cero cuando todos los datos son el mismo (ejemplo: {1,1,1,1,1}).
Ejemplo
ANUNCIOS
Un médico de un instituto quiere realizar un estudio para ver si los alumnos de un centro tienen sobrepeso. Le interesaría calcular la varianza para ver como difieren los pesos respecto a la media. Para ello, se selecciona una muestra de doce alumnos de 14 o 15 años.
Se calcula la media de los pesos de los alumnos, y se obtiene que x = 53,5kg.
Una vez se sabe la media, se halla la diferencia de cada elemento respecto a esta, para calcular la dispersión de los datos.
Una vez se ha calculado el cuadrado de la diferencia de cada elemento con la media, ya se puede determinar la varianza (S2):
El valor alto de la varianza confirma una de sus características: que es sensible a los valores que se separan bastante de la media.
A continación se puede observar un gráfico de las diferencias del peso de cada alumno respecto a la media:
La desviación típica es la medida de dispersión (S) asociada a la media. Mide el promedio de las desviaciones de los datos de una muestra (X1,X2,…,XN) de la media (x) en las mismas unidades de los datos. Dicho de otra forma, es un indicador de cómo tienden a estar agrupados los datos respecto a la media.
El cuadrado de la desviación típica es la varianza.
Cuando se trata de la desviación típica de una población, el denominador es N. Si se trata de una muestra, serà N-1.
El coeficiente de variación de Pearson (r) mide la variación de los datos respecto a la media, sin tener en cuenta las unidades en la que están.
El coeficiente de variación toma valores entre 0 y 1. Si el coeficiente es próximo al 0, significa que existe poca variabilidad en los datos y es una muestra muy compacta. En cambio, si tienden a 1 es una muestra muy dispersa.
Para interpretar fácilmente el coeficiente, podemos multiplicarlo por cien para tenerlo en tanto por cien.
Ejercicios resueltos de la desviación típica
1.Hallar la desviación media, la varianza y la desviación típica de la series de números siguientes:
2, 3, 6, 8, 11.
12, 6, 7, 3, 15, 10, 18, 5.
2, 3, 6, 8, 11.
Media
Desviación típica
12, 6, 7, 3, 15, 10, 18, 5.
Media
Desviación típica
2.Un pediatra obtuvo la siguiente tabla sobre los meses de edad de 50 niños de su consulta en el momento de andar por primera vez:
Meses | Niños |
9 | 1 |
10 | 4 |
11 | 9 |
12 | 16 |
13 | 11 |
14 | 8 |
15 | 1 |
Calcular la desviación típica.
xi | fi | Ni | xi · fi | x²i · fi |
9 | 1 | 1 | 9 | 81 |
10 | 4 | 5 | 40 | 400 |
11 | 9 | 14 | 99 | 1089 |
12 | 16 | 30 | 192 | 2304 |
13 | 11 | 41 | 143 | 1859 |
14 | 8 | 49 | 112 | 1568 |
15 | 1 | 50 | 15 | 225 |
50 | 610 | 7526 |
3.El resultado de lanzar dos dados 120 veces viene dado por la tabla:
Sumas | Veces |
2 | 3 |
3 | 8 |
4 | 9 |
5 | 11 |
6 | 20 |
7 | 19 |
8 | 16 |
9 | 13 |
10 | 11 |
11 | 6 |
12 | 4 |
Calcular la desviación típica.
xi | fi | xi · fi | xi2 · fi |
2 | 3 | 6 | 12 |
3 | 8 | 24 | 72 |
4 | 9 | 36 | 144 |
5 | 11 | 55 | 275 |
6 | 20 | 120 | 720 |
7 | 19 | 133 | 931 |
8 | 16 | 128 | 1024 |
9 | 13 | 117 | 1053 |
10 | 11 | 110 | 1100 |
11 | 6 | 66 | 726 |
12 | 4 | 48 | 576 |
120 | 843 | 6633 |
4.Calcular la desviación típica de una distribución estadística que viene dada por la siguiente tabla:
fi | |
[10, 15) | 3 |
[15, 20) | 5 |
[20, 25) | 7 |
[25, 30) | 4 |
[30, 35) | 2 |
xi | fi | xi · fi | xi2 · fi | |
[10, 15) | 12.5 | 3 | 37.5 | 468.75 |
[15, 20) | 17.5 | 5 | 87.5 | 1531.25 |
[20, 25) | 22.5 | 7 | 157.5 | 3543.75 |
[25, 30) | 27.5 | 4 | 110 | 3025 |
[30, 35) | 32.5 | 2 | 65 | 2112.5 |
21 | 457.5 | 10681.25 |
Media
Desviación típica
5.Calcular la desviación típica de la distribución de la tabla:
xi | fi | xi · fi | xi2 · fi | |
---|---|---|---|---|
[10, 20) | 15 | 1 | 15 | 225 |
[20, 30) | 25 | 8 | 200 | 5000 |
[30,40) | 35 | 10 | 350 | 12 250 |
[40, 50) | 45 | 9 | 405 | 18 225 |
[50, 60) | 55 | 8 | 440 | 24 200 |
[60,70) | 65 | 4 | 260 | 16 900 |
[70, 80) | 75 | 2 | 150 | 11 250 |
42 | 1 820 | 88 050 |
6.Las alturas de los jugadores de un equipo de baloncesto vienen dadas por la tabla:
Altura | Nº de Jugadores |
[1.70, 1.75) | 1 |
[1.75, 1.80) | 3 |
[1.80, 1.85) | 4 |
[1.85, 1.90) | 8 |
[1.90, 1.95) | 5 |
[1.95, 2.00) | 2 |
Calcular la desviación típica
xi | fi | Fi | xi · fi | xi2 · fi | |
[1.70, 1.75) | 1.725 | 1 | 1 | 1.725 | 2.976 |
[1.75, 1.80) | 1.775 | 3 | 4 | 5.325 | 9.453 |
[1.80, 1.85) | 1.825 | 4 | 8 | 7.3 | 13.324 |
[1.85, 1.90) | 1.875 | 8 | 16 | 15 | 28.128 |
[1.90, 1.95) | 1.925 | 5 | 21 | 9.625 | 18.53 |
[1.95, 2.00) | 1.975 | 2 | 23 | 3.95 | 7.802 |
23 | 42.925 | 80.213 |
Media
Desviación típica
7.Dada la distribución estadística:
fi | |
[0, 5) | 3 |
[5, 10) | 5 |
[10, 15) | 7 |
[15, 20) | 8 |
[20, 25) | 2 |
[25, ∞) | 6 |
Calcular la desviación típica.
xi | fi | Fi | |
[0, 5) | 2.5 | 3 | 3 |
[5, 10) | 7.5 | 5 | 8 |
[10, 15) | 12.5 | 7 | 15 |
[15, 20) | 17.5 | 8 | 23 |
[20, 25) | 22.5 | 2 | 25 |
[25, ∞) | 6 | 31 | |
31 |
Media
No se puede calcular la media, porque no se puede hallar la marca de clase del último intervalo.
Desviación típica
Si no hay media no es posible hallar la desviación típica.
No hay comentarios:
Publicar un comentario