domingo, 27 de diciembre de 2015

Personas por actividad

Inventores de Alemania


Raúl Krauthausen (1980) es un activista por los derechos de los discapacitados yemprendedor social y creador de varios proyectos innovadores, miembro Honorario de laorganización Ashoka1 y recipiente de la Orden del Mérito de la República Federal de Alemania, conocido para la creación de Wheelmap.org, que colecciona y muestra informaciones relevantes sobre lugares accesibles en silla de ruedas, en todo el mundo.

Raul Krauthausen.jpg

Zedler Preisverleihung 2013 by holmsohn 9351.jpg












Carl Friedrich Meerwein (Leiselheim, 2 de agosto de 1737 - Emmendingen, 6 de diciembre de 1810). Fue maestro de obras badense e inventó máquinas voladoras.

  • Carl Friedrich Meerwein (1782): Die Kunst zu fliegen nach Art der Vögel (El arte de volar a la manera de los pájaros). Oberrheinische Mannigfaltigkeiten (2) H. 3. J. J. Thurneysen d. J., Basilea y Francfort.
  • Carl Friedrich Meerwein (1784): Der Mensch! sollte der nicht auch mit Fähigkeiten zum Fliegen gebohren seyn? (¡El hombre! ¿No ha nacido también con facultades de volar?). J. J. Thurneysen Jünger. 46 páginas con grabados al cobre. Basilea.
  • Carl Friedrich Meerwein (1802): Beytrag zur richtigen Beurtheilung der Eigenschaften und der Wirkungen der Gewölbe (Sobre la evaluación adecuada de las propiedades y efectos de las bóvedas). 271 páginas. Guilhauman, Francfort


Diseño de una máquina voladora del libro de Carl Friedrich Meerwein de 1784













Hans Joachim Pabst von Ohain (14 de diciembre de 1911DessauAlemania - 13 de marzo de 1998,MelbourneEstados Unidos) fue un ingeniero aeronáutico germano-estadounidense, conocido por ser uno de los inventores del motor a reacción, junto con Frank Whittle, aunque ambos lo lograron de forma independiente.
A finales de los años 1930Frank Whittle en el Reino Unido y Hans von Ohain en Alemania desarrollaron el concepto del motor a reacción de manera independiente. Aunque de que la invención del primer motor a reacción se le da a Whittle, Ohain diseñó el primer motor a reacción compacto que funcionó, y fue el primero que propulsó a una aeronave que exclusivamente usaba motores a reacción. A pesar que ninguno de sus diseños de motor llegó a producirse en masa, su contribución al desarrollo del motor de reacción en Alemania son incalculables. Después de la guerra conoció a Whittle, y los dos se convirtieron en buenos amigos.
Hans von Ohain (USAF).jpg

Biografía

Hans von Ohain nació el 14 de diciembre del año 1911 en DessauAlemania. En 1935 obtuvo su doctorado en aerodinámica y física por la Universidad de Gotinga (en aquel entonces un gran centro de investigación aeronáutica). Mientras realizaba sus estudios en Gotinga, concibió "un motor que no requeriría un grupo propulsor" y tras obtener su título en 1935 se convirtió en asistente junior de Robert Wichard Pohl (en aquel momento director del Instituto de Física de la Universidad).
En 1936, durante el tiempo en el que trabajaba con Pohl, consiguió la patente de su versión de motor a reacción: Proceso y aparato para producir corrientes de aire para propulsar a a aeronaves1 A diferencia del diseño de Frank Whittle, el de von Ohain usaba unn compresor centrífugo y una turbina situados muy próximos uno del otro.
Durante su estancia en la universidad, von Ohain llevaba su automóvil deportivo a un taller local, Bartles and Becker. Allí conoció a Max Hahn, un hábil mecánico de automoción y llegó a un acuerdo con él para construir un prototipo de su diseño, que le costó aproximadamente 1.000 marcos. El prototipo resultante tenía un diámetro mayor que el creado por Whittle en 1937 pero era mucho más corto. Cuando estuvo terminado lo llevó a la universidad para realizar pruebas con él, pero pronto aparecieron problemas con la estabilidad de la combustión. En ocasiones el combustible no se quemaba en el interior de la cámara de combustión y en su lugar salía por la turbina auto-inflamándose al entrar en contacto con el aire exterior en forma de llamaradas que sobrecalentaban el motor eléctrico que movía el compresor.
Es importante señalar que por definición un turborreactor obtiene la energía para mover el compresor de la que produce la turbina. Un aerorreactor que necesita un motor exterior para mover su compresor no puede considerarse un verdadero turborreactor. Por tanto, von Ohain no habría construido un verdadero turborreactor con este primer modelo.

Heinkel

En febrero de 1936, Pohl lo recomendó a Ernst Heinkel, especialmente por sus diseños. Heinkel concertó una reunión entre sus ingenieros y von Ohain, que le asaltaron a preguntas durante horas, de las que básicamente obtuvieron la frase de que el motor de garaje jamás funcionaría correctamente, pero que no había ningún error en el concepto. Los ingenieros quedaron satisfechos con las ideas de von Ohain, y a finales de abril tanto él como Hahn accedieron a las fábricas de Heinkel en el aeródromo de Marienehe a las afueras de Rostock (en Warnemünde).
Durante los dos meses siguientes llevó varios estudios del flujo de aire en el modelo, realizando varias mejoras. Tras ver la mejoría en los resultados se decidió a crear un nuevo motor que incorporase todos los cambios, alimentado por hidrógeno gaseoso a presión. El motor resultante, denominado Heinkel-Strahltriebwerk 1 (HeS 1, que en alemán significa Heinkel Motor a Reacción 1) fue fabricado por los mejores obreros de los talleres de fabricación de la compañía. Mientras tanto, Hahn se dedicó al problema que presentaba la combustión, un área donde ya tenía cierta experiencia.
El motor era muy simple ya que estaba fabricado en gran parte de chapa metálica. La fabricación del mismo comenzó a finales del verano de 1936, terminando el ensamblaje en marzo de 1937. Dos semanas después se probó, inicialmente usando hidrógeno como combustible, pero la alta temperatura de los gases de escape provocaban considerables "quemados" en el metal de la turbina. Por lo demás las pruebas fueron exitosas y en septiembre se probó el motor usando gasolina por primera vez. Von Ohain había logrado por fin un turborreactor autónomo (a pesar de haberlo logrado 5 meses después que Whittle). Aparecieron pequeños problemas en el diseño, por ejemplo, el cambio a gasolina provocaba que la combustión se ahogase, por lo que Hahn rediseñó la cámara de combustión basándose en el diseño de un soplete de soldadura y comprobó que el diseño funcionaba mucho mejor. Aunque el motor no fue diseñado para el vuelo, demostró sin lugar a dudas que el concepto básico era viable para ello. Con todo esto, von Ohain había alcanzado a Whittle al final. A partir de ahora, con una financiación mucho mayor y con el apoyo de la fuerte industria alemana conseguiría avanzar mucho más rápido que su competidor.
Aunque las tareas de desarrollo del HeS 1 continuaron, su equipo ya se había pasado al diseño de un motor apto para el vuelo, el HeS 3. Las principales diferencias con el HeS-1 fueron el uso de un compresor y turbina obtenidos por mecanizado en lugar de por forja de chapa, en sustitución de la inclinación y plegado de chapa, y una reorganización de la distribución interior para reducir el área frontal, ubicando la cámara de combustión en el espacio existente entre el compresor y la turbina. No obstante este diseño no funcionó correctamente por falta de espacio para que la combustión ocurriera completamente, por lo que se diseñó un modificado, el HeS-3b, donde la cámara de combustión fue rediseñada para permitir que la mayor parte de la cámara quedase justo tras el compresor, resultado un diseño mayor que el original, pero aun así muy compacto. El HeS-3b fue probado por primera vez en julio de 1939, y fue probado en vuelo por primera vez en un avión Heinkel He 118. El primer prototipo de HeS-3b tuvo una vida útil muy corta, pero el segundo prototipo estuvo listo pronto, y fue probado en el Heinkel He 178, que voló por primera vez el 27 de agosto de 1939, convirtiéndose así en la primera aeronave en volar propulsada por un aerorreactor. El piloto al mando de las pruebas fue Erich Warsitz. Así, aunque Whittle fuese el primero en concebir, describir, patentar y construir un motor que funcionase, el de Von Ohain fue el primer turborreactor que propulsó a un avión.
Tras esto comenzaron inmediatamente el desarrollo de versiones mayores, la primera fue el HeS 6, una versión alargada del HeS 3b; y luego con un nuevo diseño conocido como el HeS 8 que sirvió para reorganizar una vez más la disposición del motor. En el HeS 8 se separaron el compresor y la turbina, conectándolos a través de un eje alargado, introduciendo una única cámara de combustión anular entre ellos, que reemplazó a las cámaras de combustión individuales. Este motor estuvo pensado para ser instalado en el caza Heinkel He 280, pero el desarrollo de la célula del avión fue mucho más rápido que el del motor, por lo que tuvieron que comenzar los test de planeo del avión mientras el motor continuaba en desarrollo. En marzo de 1941 se instaló en el avión finalmente un HeS 8, produciéndose el primer vuelo el 2 de abirl. Tres días después el avión participó en una demostración ante miembros del partido Nazi y oficiales del RLM, todos los cuales quedaron impresionados por los avances obtenidos permitiendo nuevas inversiones en el desarrollo.
Llegado a este punto existían en Alemania varios proyectos de desarrollo de turborreatores. Heinkel estaba tan impresionado por el concepto de turborreactor que contrató a Adolph Müller (que entonces trabajaba para Junkers), que se encontraba desarrollando un diseño con un compresor axial, que fue bautizado como Heinkel HeS 30. Müller abandonó Junkers después de que estos comprasen Junkers Motoren, que tenían su propio proyecto (entonces conocido como Junkers Jumo 004). Mientras tanto, BMW realizaba importantes avances en su propio diseño, el BMW 003.

Después de la guerra

En 1947 von Ohain fue llevado a los Estados Unidos con la Operación Paperclip, por lo que pasó a trabajar para la Fuerza Aérea de los Estados Unidos en la Base Aérea de Wright-Patterson. En 1956 se convirtió en el director del laboratorio de investigación aeronáutica de la fuerza aérea y en 1975 fue nombrado científico-jefe del laboratorio de propulsión aérea.
En Wright-Patterson, von Ohain continuó sus trabajos sobre varios temas. A principios de los años 60 trabajó en el diseño de un cohete a reacción de núcleo gaseoso, que debía retener el combustible nuclear mientras permitía que la masa de trabajo fuera usada como gases propulsantes. La ingeniería usada para este diseño fue aplicada luego a una serie de utilidades más realistas, como bombas hidráulicas o compresores centrífugos. Más tarde, von Ohain usó la teoría de flujo másico desarrollada para este diseño de cohete aplicándola a un diseño de un nuevo aerorreactor sin partes móviles, en el que el flujo de aire a través del motor creaba un vórtice estable que sustituía tanto al compresor como a la turbina.

Motor a reacción

A comienzos de la década de 1930 von Ohain inventó el motor a reacción, patentándolo en 1935. Sin embargo, su invención también se atribuye al británico Frank Whittle, quien lo inventó cuatro años antes de forma independiente. No obstante, fue von Ohain el creador del motor del primer avión a reacción, que estuvo acabado dos años antes que el de Whittle.
Vista trasera del Heinkel He 178, primer avión a reacción.
Fue en septiembre del año 1937 cuando, respaldado por Ernst Heinkel, Hans von Ohain produjo un motor a reacción que funcionaba con hidrógeno como combustible, llamado Heinkel/Ohain HeS3B. En agosto de 1939 acoplaron el motor en cuestión a un avión, el que sería el primer avión a reacción de la historia, el He 178, alcanzando una velocidad de 560 km/h en su vuelo de prueba.
La Segunda Guerra Mundial estaba al caer, y la compañía Heinkel se dispuso a fabricar un nuevo modelo, propulsado por dos motores de von Ohain. Sin embargo, los nazis alemanes, que hasta ahora gozaban del servicio de Heinkel, no les ofrecieron contrato, siendo la compañía Messerschmitt los encargados de suministrar aviones a reacción.
Tras la Segunda Guerra Mundial, el motor a reacción reemplazó completamente a las hélices y al motor de pistones, mejorando los aviones en multitud de atributos: velocidad, tamaño, o autonomía, entre otros.

Honores


Un motor de reacción,1 reactor o jet (del inglés jet engine),2 es un tipo de motor que descarga un chorro de fluido a gran velocidad para generar un empujede acuerdo a las leyes de Newton. Esta definición generalizada del motor de reacción incluye turborreactoresturbofanescohetesestatorreactores ypulsorreactores, pero, en su uso común, el término se refiere generalmente a una turbina de gas utilizada para producir un chorro de gases para propósitos de propulsión.

Los motores de reacción pueden ser datados desde el siglo I d. C. , cuando Herón de Alejandría inventó la eolípila. Ésta utilizaba el poder del vapor dirigido a través de dos salidas, que causaba que una esfera girase rápidamente sobre su eje dando así un giro raramente hexagonal. Sin embargo, el aparato nunca fue utilizado para realizar trabajos mecánicos y las potenciales aplicaciones prácticas de la invención de Herón no fueron reconocidas. Se consideró como una curiosidad, ya que no tenía uso alguno y en su momento no tenía utilidad específica.
La propulsión a chorro comenzó con la invención del cohete por los chinos en el siglo XI. El sistema de propulsión del cohete fue utilizado inicialmente para crear fuegos artificiales pero gradualmente progresó para crear algunos tipos de armas, aunque su tecnología no progresó durante siglos.
El problema era que esos cohetes eran demasiado ineficaces para ser útiles en la aviación general. Durante los años 1930, el motor de combustión interna en sus diferentes formas (radial estático y rotatorio, refrigerados por aire y líquido) era el único tipo de planta motriz disponible para los diseñadores aeronáuticos. Sin embargo, los ingenieros empezaron a comprender que el motor de pistones estaba limitado en términos del máximo rendimiento que podía alcanzar; el límite era esencialmente el de la eficiencia de la hélice.3 Ésta alcanzaba su máximo cuando las puntas de las palas se aproximaban a la velocidad del sonido. Si el rendimiento del motor, y por tanto del avión, se quería incrementar para superar esta barrera, se debía encontrar un nuevo modo para mejorar radicalmente el diseño del motor de pistones, o se necesitaba desarrollar un nuevo tipo de planta propulsora. Esto fue el motivo para el desarrollo del motor de reacción.
Los primeros intentos de reactores fueron diseños híbridos en los que una fuente de energía externa aportaba la compresión. En este sistema, denominado «termorreactor» por Secondo Campini, el aire era primero comprimido por una hélice movida por un motor de pistones convencional, luego se mezclaba con el combustible y ardía para crear el empuje. Ejemplos de este tipo de diseño fueron elCoandă-1910 de Henri Coandă, posteriormente el Caproni Campini N.1 o CC.2 y el motor Tsu-11 japonés para impulsar en los avioneskamikaze Ohka a finales de la Segunda Guerra Mundial. Ninguno era completamente eficiente, y el Caproni Campini N.1 incluso era más lento que su diseño tradicional con motor de pistones y hélice.
La clave para un reactor útil fue la turbina de gas, utilizada para extraer energía para impulsar el compresor desde el propio motor. Laturbina de gas no era una idea nueva: la patente para una turbina estacionaria fue otorgada a John Barber en Inglaterra en 1791. La primera turbina de gas que funcionó de forma autosostenida exitosamente fue construida en 1903 por el ingeniero noruego Ægidius Elling. Las primeras patentes para la propulsión a chorro fueron otorgadas en 1917. Las limitaciones en el diseño y en la metalurgia impidieron que estos tipos de motores fuesen fabricados. Los principales problemas eran la seguridad, la fiabilidad, el peso y, especialmente, el funcionamiento continuo.
En 1929, el aprendiz Frank Whittle envió formalmente sus ideas para un turborreactor a sus superiores. El 16 de enero de 1930, en Inglaterra, Whittle pidió su primera patente (otorgada en 1932). La patente mostraba un compresor axial de dos etapas alimentando a un compresor centrífugo de un único lado. Whittle posteriormente se concentró en un compresor centrífugo más simple por varias razones prácticas. En 1935, Hans von Ohain comenzó a trabajar en un diseño similar en Alemania, aparentemente sin estar informado del trabajo de Whittle, y en ese mismo año, en España el ingeniero aeronáutico militar Virgilio Leret ya disponía de un proyecto de un motor a reacción denominado Mototurbocompresor de Reacción Continua, patentado en Madrid el 28 de marzo de 1935, pero su fusilamiento al año siguiente le impidió desarrollar el proyecto, cuyos planos suministró un pariente republicano al ejército inglés.
Whittle tuvo su primer motor listo en abril de 1937. Estaba alimentado por combustible líquido e incluía una bomba autocontenida. El motor de Von Ohain, con cinco meses de retraso respecto al de Whittle, utilizaba gas que se proporcionaba bajo una presión externa, por tanto no era autocontenido. El equipo de Whittle experimentó casi un fracaso cuando el motor no se pudo parar, incluso después de cortar el combustible. El combustible se había filtrado en el motor y se acumuló, por lo que el motor no se pararía hasta que se quemase todo el combustible.
Ohain contactó con Ernst Heinkel, uno de los principales industriales de aviación de la época, que vio las posibilidades del nuevo diseño. Heinkel había comprado recientemente la compañía de motores Hirth, y Ohain y su maquinista jefe, Max Hahn, fueron asignados como una nueva división de la compañía Hirth. Su primer motor, el HeS 1, comenzó a funcionar en septiembre de 1937. A diferencia del diseño de Whittle, Ohain utilizó hidrógeno como combustible, proporcionado bajo presión externa. Los siguientes diseños culminaron en el motor alimentado por gasolina HeS 3 de 5 kN, que fue utilizado para equipar en un He 178 y voló por primera vez el 27 de agosto de 1939 porErich Warsitz en el aeródromo de Marienehe. El He 178 se convirtió en el primer avión de reacción.
En esos momentos, el motor de Whittle comenzó a ser útil y su Power Jets Ltd. empezó a recibir dinero del Ministerio del Aire. En 1941 una versión del motor denominado W.1 con una potencia de 4 kN fue utilizada en el avión Gloster E28/39 especialmente construido para el motor y realizó su primer vuelo el 15 de mayo de 1941.
Motor en un avión (A320 de Clickair).
Un problema con los primeros diseños, que se denominaban motores de flujo centrífugo, era que el compresor trabajaba lanzando (acelerando) el aire desde la entrada de aire central a la periferia del motor, donde el aire era comprimido, convirtiendo su velocidad en presión. Una ventaja de este diseño fue que ya era bien conocido, siendo implementado en supercompresores centrífugos. Sin embargo, dadas las limitaciones tecnológicas, el compresor necesitaba ser de un gran diámetro para producir la potencia requerida.
El austriaco Anselm Franz de la división de motores de Junkers (Junkers Motoren oJumo) solucionó estos problemas con la introducción del compresor de flujo axial, que era esencialmente una turbina en reversa. El aire venía del frente del motor y era impulsado hacia la parte posterior por una etapa de hélices, donde chocaba contra un grupo de hélices que no rotaban. El proceso no se acercaba en potencia al del compresor centrífugo, por lo que se añadía varios grupos de hélices para conseguir la compresión necesaria. Incluso con toda la complejidad añadida, el motor era de un diámetro mucho menor. Jumo fue asignado para el siguiente motor y el resultado fue el Jumo 004. Tras algunos problemas menores, la producción en serie de este motor comenzó en 1944 como planta motriz para el primer caza a reacción, el Messerschmitt Me 262 (y posteriormente el primer bombardero reactor, el Arado Ar 234). Tras la Segunda Guerra Mundial, los aliados estudiaron el Me 262 y su tecnología contribuyó a los primeros cazas a reacción estadounidenses y soviéticos.
Los motores de flujo centrífugo han sido mejorados desde su introducción. Con las mejoras en la tecnología de rodamientos, la velocidad de los ejes ha aumentado, reduciendo en importancia el diámetro del compresor. Una longitud menor del motor permanece siendo una ventaja de este diseño. Además, sus componentes son robustos, mientras que los motores de flujo axial son más propensos a ser dañados por objetos externos.




No hay comentarios:

Publicar un comentario