miércoles, 31 de enero de 2018

Mecánica - Ingeniería mecánica


La fotoelasticidad es una técnica experimental para la medición de esfuerzos y deformaciones. Se basa en el uso de luz para dibujar figuras sobre piezas de materiales isotropos, transparentes y continuos, que están siendo sometidas a esfuerzos. Las figuras que se dibujan son semejantes a las mostradas al realizar un análisis de elementos finitos ya que se pueden observar contornos y colores.
La medición se logra al evaluar el cambio del índice de refracción de la pieza al someterse a una carga. En el caso de una pieza no trasparente, se cubre la pieza con una resina birrefringente.

Historia[editar]

La fotoelasticidad fue desarrollada a principios del siglo XX. El primer trabajo fue de E. Coker y de L. Filon en la universidad de Londres, y permitió a la fotoelasticidad convertirse rápidamente en una técnica viable para el análisis cualitativo de los esfuerzos. Se le encontró una gran aplicación en la industria, en dos dimensiones rebasó al resto de las técnicas en confiabilidad, alcance y factibilidad. Ningún otro método tenía la misma precisión visual y cobertura de los patrones de esfuerzo.
El desarrollo de polariscopios digitales usando los LED y los diodos láser permitió la supervisión continua de las estructuras y la fotoelasticidad dinámica. Los progresos en el proceso de imagen permiten que la información de los esfuerzos sea extraída automáticamente de su patrón.
El advenimiento del procesamiento por computadora con su superior potencia de cálculo ha revolucionado el análisis de esfuerzos, haciendo que se extienda el uso de métodos numéricos. En particular, el modelado por el análisis de elementos finitos (FEM) se ha convertido en la herramienta dominante, eclipsando muchas técnicas tradicionales para el análisis de los esfuerzos. A pesar de el avance del FEM, la fotoelasticidad -uno de los más viejos métodos para el análisis experimental de los esfuerzos-, se ha restablecido con progresos recientes y nuevos usos.










compresor es una máquina de fluido que está construida para aumentar la presión y desplazar cierto tipo de fluidos llamados compresibles, tales como gases y vapores. Esto se realiza a través de un intercambio de energía entre la máquina y el fluido, en el cual el trabajo ejercido por el compresor es transferido a la sustancia que pasa por él convirtiéndose en energía de flujo, aumentando su presión y energía cinética impulsándola a fluir.
Al igual que las bombas, los compresores también desplazan fluidos, pero a diferencia de las primeras que son máquinas hidráulicas, éstos son máquinas térmicas, ya que su fluido de trabajo es compresible, sufre un cambio apreciable de densidad y, generalmente, también de temperatura; a diferencia de los ventiladores y los sopladores, los cuales impulsan fluidos, pero no aumentan su presión, densidad o temperatura de manera considerable.

Historia[editar]

Los antiguos herreros solían soplar para intensificar su fuego y de esta forma facilitaban forjar el hierro, y aunque no se consideren el primer antecedente a los compresores atmosféricos actuales, se puede decir que sí lo fueron. Los gritos y rugidos inhalaban aire en su expansión, luego se exhala mediante una pequeña apertura al final, logrando controlar la cantidad de oxígeno a una locación específica. Con el tiempo se mejoró la forma de soplado, de modo que los griegos y romanos utilizaban fuelles para la forja de hierro y se sabe de diversos mecanismos hidráulicos y de fuelle para accionar órganos musicales.
Compresor utilizado para la recolección de algodón a inicios del siglo XIX.
Durante el siglo diecisiete, el ingeniero físico alemán Otto von Guerickeexperimentó y mejoró los compresores atmosféricos. En 1650, Guericke inventó la primera bomba de oxígeno, la cual podía producir un vacío parcial y él mismo usó esto para estudiar el fenómeno del vacío y el papel del oxígeno en la combustión y la respiración.
En 1829, la primera fase o componente del compresor atmosférico fue patentada. Dicho componente comprimía oxígeno en cilindros sucesivos.
Para 1872, la eficiencia del compresor fue mejorada mediante el enfriamiento de los cilindros por motores de agua, que causó a su vez la invención de cilindros de agua.
Uno de los primeros usos modernos de los compresores atmosféricos fue gracias a los buzos de mares profundos, quienes necesitaban un suministro de la superficie para sobrevivir. Los buzos que emplearon compresores atmosféricos tuvieron lugar en 1943. Los primeros mineros utilizaron motores de vapor para producir suficiente presión para operar sus taladros, incluso cuando dicho dispositivos probaban ser extremadamente peligrosos para los mineros.
Con la invención del motor de combustión interna, se creó un diseño totalmente nuevo para los compresores atmosféricos. En 1960 los lava-autos de auto-servicios, alta-presión y “hazlo tú mismo” se hicieron populares gracias a los compresores atmosféricos. Los compresores atmosféricos se pueden conseguir en su presentación eléctrica o de gasolina, siendo más accesibles para consumidores hogareños.
Un émbolo bombea oxígeno comprimido dentro de un tanque a cierta presión, donde se mantiene hasta que es requerido para ciertas acciones tales como hinchar llantas o apoyar el empleo de herramientas neumáticas.
El oxígeno comprimido es una herramienta sumamente importante y hoy en día su eficiencia, la contaminación y su accesibilidad le dan la popularidad que tienen en el mercado.

Utilización[editar]

Los compresores son ampliamente utilizados en la actualidad en campos de la ingeniería y hacen posible nuestro modo de vida por razones como:

Tipos de compresores[editar]

Funcionamiento de un compresor axial.
Clasificación según el método de intercambio de energía:
Hay diferentes tipos de compresores atmosféricos, pero todos realizan el mismo trabajo: toman aire de la atmósfera, lo comprimen para realizar un trabajo y lo regresan para ser reutilizado.
  • El compresor de desplazamiento positivo: Las dimensiones son fijas. Por cada movimiento del eje de un extremo al otro tenemos la misma reducción en volumen y el correspondiente aumento de presión (y temperatura). Normalmente son utilizados para altas presiones o poco volumen. Por ejemplo el inflador de la bicicleta. También existen compresores dinámicos. El más simple es un ventilador que usamos para aumentar la velocidad del aire a nuestro entorno y refrescarnos. Se utiliza cuando se requiere mucho volumen de aire a baja presión.1
  • El compresor de émbolo: Es un compresor atmosférico simple. Un vástago impulsado por un motor (eléctrico, diésel, neumático, etc.) es impulsado para levantar y bajar el émbolo dentro de una cámara. En cada movimiento hacia abajo del émbolo, el aire es introducido a la cámara mediante una válvula. En cada movimiento hacia arriba del émbolo, se comprime el aire y otra válvula es abierta para evacuar dichas moléculas de aire comprimidas; durante este movimiento la primera válvula mencionada se cierra. El aire comprimido se lleva a un depósito de reserva. Este depósito permite el transporte del aire mediante distintas mangueras. La mayoría de los compresores atmosféricos de uso doméstico son de este tipo.
Cabezal para compresor de pistón
  • El compresor de pistón: Es en esencia una máquina con un mecanismo pistón-biela-cigüeñal. Todos los compresores se accionan por alguna fuente de movimiento externa. Lo común es que estas fuentes de movimiento sean motores, tanto de combustión como eléctricos. En la industria se mueven compresores accionados por máquinas de vapor o turbinas. En este caso, cuando el cigüeñal gira, el pistón desciende y crea vacío en la cámara superior, este vacío actúa sobre la válvula de admisión (izquierda), se vence la fuerza ejercida por un resorte que la mantiene apretada a su asiento, y se abre el paso del aire desde el exterior para llenar el cilindro. El propio vacío, mantiene cerrada la válvula de salida (derecha).2
Durante la carrera de descenso, como puede verse en el esquema de abajo (lado izquierdo) todo el cilindro se llena de aire a una presión cercana a la presión exterior. Luego, cuando el pistón comienza a subir, la válvula de admisión se cierra, la presión interior comienza a subir y esta vence la fuerza del muelle de recuperación de la válvula de escape o salida (esquema lado derecho), con lo que el aire es obligado a salir del cilindro a una presión algo superior a la que existe en el conducto de salida. Obsérvese que el cuerpo del cilindro está dotado de aletas, estas aletas, aumentan la superficie de disipación de calor para mejorar la transferencia del calor generado durante la compresión al exterior.
Excepto en casos especiales, en el cuerpo del compresor hay aceite para lubricar las partes en rozamiento, así como aumentar el sellaje de los anillos del pistón con el cilindro. Este aceite no existe en los compresores de tipo médico, usado en la respiración asistida, debido a que siempre el aire de salida contiene cierta cantidad de él o sus vapores.
Los compresores de doble etapa (esquema de abajo), trabajan con el mismo sistema simple de pistón-biela-cigüeñal, con la diferencia que aquí trabajan dos pistones, uno de alta y otro de baja presión. Cuando el pistón de alta presión (derecha) expulsa el aire, lo manda a otro cilindro de menor volumen. Al volver a recomprimir el aire, alcanzamos presiones más elevadas.
  • El compresor de tornillo (caracol): Aún más simple que el compresor de émbolo, el compresor de tornillo también es impulsado por motores (eléctricos, diésel, neumáticos, etc.). La diferencia principal radica que el compresor de tornillo utiliza dos tornillos largos para comprimir el aire dentro de una cámara larga. Para evitar el daño de los mismos tornillos, aceite es insertado para mantener todo el sistema lubricado. El aceite es mezclado con el aire en la entrada de la cámara y es transportado al espacio entre los dos tornillos rotatorios. Al salir de la cámara, el aire y el aceite pasan a través de un largo separador de aceite donde el aire ya pasa listo a través de un pequeño orificio filtrador. El aceite es enfriado y reutilizado mientras que el aire va al tanque de reserva para ser utilizado en su trabajo.
  • Sistema pendular Taurozzi: consiste en un pistón que se balancea sobre un eje generando un movimiento pendular exento de rozamientos con las paredes internas del cilindro, que permite trabajar sin lubricante y alcanzar temperaturas de mezcla mucho mayores.
  • Alternativos o reciprocantes: utilizan pistones (sistema bloque-cilindro-émbolo como los motores de combustión interna). Abren y cierran válvulas que con el movimiento del pistón aspira/comprime el gas. Es el compresor más utilizado en potencias pequeñas. Pueden ser del tipo herméticos, semiherméticos o abiertos. Los de uso doméstico son herméticos, y no pueden ser intervenidos para repararlos. Los de mayor capacidad son semiherméticos o abiertos, que se pueden desarmar y reparar.
  • De espiral (orbital, scroll).
  • Rotativo de paletas: en los compresores de paletas la compresión se produce por la disminución del volumen resultante entre la carcasa y el elemento rotativo cuyo eje no coincide con el eje de la carcasa (ambos ejes son excéntricos). En estos compresores, el rotor es un cilindro hueco con estrías radiales en las que las palas (1 o varias) comprimen y ajustan sus extremos libres al interior del cuerpo del compresor, comprimiendo así el volumen atrapado y aumentando la presión total.
  • Rotativo-helicoidal (tornillo, screw): la compresión del gas se hace de manera continua, haciéndolo pasar a través de dos tornillos giratorios. Son de mayor rendimiento y con una regulación de potencia sencilla, pero su mayor complejidad mecánica y costo hace que se emplee principalmente en elevadas potencias, solamente.
  • Rotodinámicos o turbomáquinas: utilizan un rodete con palas o álabes para impulsar y comprimir al fluido de trabajo. A su vez éstos se clasifican en axiales y centrífugos.

Análisis de la compresión de un gas[editar]

Imaginemos que en un cilindro tenemos un volumen  de un gas ideal y está «tapado» por un pistón que es capaz de deslizarse verticalmente sin fricción. En un principio este sistema se encuentra en equilibrio con el exterior, es decir, la presión que ejerce el gas sobre las paredes del cilindro y sobre el pistón (que es la misma en todas las direcciones)  es igual a la presión que ejerce el peso del pistón sobre el gas , y más ninguna otra fuerza obra sobre nuestro sistema.
Ahora imaginemos que repentinamente aumentamos la presión externa a  y como la presión que ejerce el gas sobre el pistón es  el equilibrio se romperá y el cilindro deslizará hacia abajo ejerciendo un trabajo . Esta energía, por la primera ley de la termodinámica, se convertirá instantáneamente en un incremento de energía interna del gas en el recipiente, y es así como el gas absorberá el trabajo del desplazamiento pistón.

Compresión Isotérmica Reversible para gases ideales[editar]

Esta forma de compresión es una secuencia de infinitas etapas, o estados, de equilibrio que se conoce como movimiento cuasi-estático, en los que siempre se cumple que la presión que ejerce el gas sobre las paredes del recipiente es igual a la presión que ejerce el pistón sobre el gas .


Los compresores axiales, son un tipo especial de turbomaquinaria que incluye bombas, ventiladores, o compresores.

El compresor axial fue utilizado en alguna de las primeras turbinas, pero debido a los pocos conocimientos de aerodinámica de la época, dio como resultado compresores con rendimientos muy bajos. Hoy en día, gracias a su alto rendimiento y facilidad de acoplamiento es el más utilizado en aviación.
Los compresores axiales están formados por varios discos llamados rotores y estatores que llevan acoplados una serie de álabes. Entre rotor y rotor se coloca un espaciador, el cual permite que se introduzca un estator entre ambos. Estos espaciadores pueden ser independientes o pertenecer al rotor. Cada disco de rotor y estator forman un escalón de compresor. En el rotor se acelera la corriente fluida para que en el estator se vuelva a frenar, convirtiendo la energía cinética en presión. Este proceso se repite en cada escalón. En algunos compresores se colocan en el cárter de entrada unos álabes guía, los cuales no forman parte del compresor, pues solo orientan la corriente para que entre con el ángulo adecuado.


Animación de un compresor axial. Los álabes fijos forman el estator.

No hay comentarios:

Publicar un comentario