viernes, 1 de septiembre de 2017

Histología vegetal y animal

ORIGEN DE LA CÉLULA


La vida se originó a partir de procesos físico-químicos

1.- Moléculas orgánicas

2.- Polímeros

3.- Membrana limitante

4.- Replicación + variabilidad + selección: evolución

5.- Complejos moleculares: coevolución

6.- Códico genético

7.- ADN como soporte de la información
El problema del origen de la vida es el problema del origen de la célula. No se sabe cómo apareció la primera célula en la Tierra, pero se acepta que su origen fue un fenómeno físico-químico. Esta visión llegó con las propuestas de A.I. Oparin y J.B.S. Haldane en torno a los años 20 del siglo pasado (también fue sugerida por C. Darwin en una carta personal). Todo el desarrollo de la teoría de la aparición de las primeras células está basado en especulaciones y en experimentos de laboratorio que simulan las supuestas condiciones de la Tierra en sus orígenes. Estos experimentos apoyan en mayor o menor medida tales ideas.
Puesto que es un proceso físico-químico surgen dos posibilidades interesantes en el campo de biología. a) Podemos crear vida. Se podría "fabricar" una célula, utilizando las moléculas que existen hoy en día en las células actuales y colocándolas todas juntas dentro de una vesícula membranosa. Actualmente se están dando los primeros intentos serios para conseguirlo desde una rama de la biología denominada biología sintética. Ya se puede sintetizar en una máquina todo el ADN de una célula procariota y se ha conseguido sintetizar un cromosoma eucariota. b) Vida extraterrestre. Existe la posibilidad de que en otro lugar del Universo se hayan dado las condiciones necesarias, similares a las que se dieron en la Tierra, para la aparición de la vida extraterrestre, probablemente en muchos planetas y en muchas ocasiones, incluso en estos momentos.
Para investigar el origen de la vida deberíamos saber reconocer a un ser vivo¿Qué es un ser vivo? Intuitivamente somos capaces de identificar a los seres que consideramos vivos. Sin embargo, escribir una definición es más complicado. Podemos decir que es un organismo que tiene la cualidad de la vida. Esto es algo que los define sin ninguna duda. Pero nos encontramos con otro problema de definiciones: ¿Qué es la vida? No existe un consenso entre los científicos sobre las palabras que deben definir sin ninguna duda el concepto vida. Se da la paradoja de que la Biología, parte de la ciencia que estudia la vida y a los seres vivos, se ocupa de algo mal definido, casi una intuición. Actualmente se tiende a no proponer una definición sino a considerar a la vida como un conjunto de propiedades que debería poseer un organismo para ser considerado como vivo. O dicho de otro modo, un organismo debería cumplir con una serie de propiedades si queremos considerarlo como que posee vida o está vivo. Sin embargo, tampoco existe consenso sobre cuántas y cuáles son esas propiedades, aunque se suelen incluir:
a) Reproducción o transmisión de información codificada por el ácido desoxirribonucleico o ADN.b) Mantenimiento de la homeostasis interna gracias a su capacidad para obtener energía externa (metabolismo).c) Tener capacidad para producir respuestas a estímulos externos o internos.d) Evolución condicionada por la interacción con el medio externo, capacidad para la adaptación (evolución darwiniana).e) Etcétera.
Este inconveniente de la definición de la vida afecta a la búsqueda de vida en otros planetas . Intuitivamente sabemos lo que buscamos pero sólo porque pudiera parecerse a lo que conocemos en la Tierra y no porque se ajuste a una definición que acote perfectamente qué es la vida o a un organismo vivo. Hoy en día no se descarta que parte de las moléculas orgánicas que se necesitan para crear la vida se dieran en otros planetas o en el propio espacio, y que tales componentes fueran transportados por asteroides y cometas hasta la Tierra. Sería plausible la existencia en otros planetas de organismos similares a los de la Tierra porque algunos planetas pudieron tener agua, como se ha demostrado en la Luna o en Marte, y posiblemente las condiciones para la aparición de la vida tal y como la entendemos en la Tierra.
La teoría de la panespermia (literalmente, semillas en todas partes) postula un origen extraterrestre de la vida o de las "semillas" de la vida que llegaron a la Tierra. Estas semillas serían moléculas orgnánicas más o menos complejas. Hay observaciones que lo apoyan. Diversos asteroides, alguno marciano, contienen sustancias orgánicas complejas. Hoy se sabe que la química del Universo está plagada de sustancias carbonadas y, aunque no hay evidencias de que las primeras células llegaran del espacio exterior, sí se cree que la lluvia inicial de meteoritos que sufrió la Tierra en sus orígenes fue una fuente inmensa de moléculas orgánicas. De cualquier manera todo el proceso del origen de la vida seguiría siendo un proceso físico-químico.
Reloj temporal
Secuencia temporal aproximada de la aparición de la vida en la Tierra y algunos de los organismos que emergieron después.
¿Cuándo apareció la vida en la Tierra? La Tierra se formó hace unos 4.500 millones de años. Los indicios fósiles sugieren que los primeros seres orgánicos que dejaron huellas aparecieron entre 3500 y 3800 millones de años atrás. Durante los 500 millones de años iniciales las condiciones no fueron muy propicias para la aparición de las células puesto que habría altas temperaturas, carencia de atmósfera protectora, una lluvia constante de meteoritos, etcétera. Pero sólo unos 1000-1200 millones de años después ya parece que hubo organismos microscópicos que dejaron restos orgánicos. Esto implica que el proceso físico-químico de formación de estos primeros organismos debió empezar antes de esos 1000-1200 millones de años, en una etapa denominada prebiótica.
Intuitivamente podemos imaginar una serie de pasos necesarios para la aparición de las primeras células a partir de sustancias químicas. No hay acuerdo en el orden, ni en las condiciones o los protagonistas de ellas, pero de una otra forma estos pasos deben haberse producido:
Experimento Miller-Urey
Esquema del sistema ideado por Miller-Urey en el que se demuestra que se pueden sintetizar moléculas orgánicas complejas a partir de otras más simples, cuando estas últimas se someten a condiciones supuestamente similares a las de la Tierra primigenia. Años 50 del siglo XX.
1.- Formación de moléculas orgánicas. Las células están formadas por moléculas orgánicas que son los ladrillos de los que está hecha la vida, además del agua e iones. Las principales son proteínas, nucleótidos, azúcares y grasas. ¿Cómo se formaron? a) Condiciones físicas extremas. Si se coloca en un matraz una disolución acuosa con sustancias como CO2, amoniaco, metano e hidrógeno, y se les somete a una alta temperatura y a descargas eléctricas, se consigue que se formen pequeñas moléculas orgánicas como cianuro de hidrógeno, formaldehído, aminoácidos, azúcares, purinas y pirimidinas (necesarios para formar nucleótidos). Éste fue el experimento que realizaron Miller y Urey intentando simular las condiciones primitivas. Ello no demuestra que estas moléculas se formaran así en el origen de la vida, pero es una prueba de que las moléculas orgánicas se pueden formar mediante reacciones físico-químicas . Además, debido a la diversidad de los ambientes terrestres se pudieron dar multitud de condiciones diferentes que favorecieron la creación de unas moléculas u otras. Hoy se tiende a situar esa síntesis prebiótica en las profundidades del mar, más concretamente en los alrededores de las fumarolas, donde se darían condiciones propicias y habría una cierta protección. b) Origen extraterrestre. Es seguro que las moléculas orgánicas se formaron y se siguen formando en el espacio y se encuentran en meteoritos y cometas. Es posible que gracias a cometas y meteoritos que chocaron con la Tierra de una forma masiva aportaran suficiente materia orgánica para el comienzo de la vida.
2.- Formación de polímeros. Ya tenemos moléculas orgánicas, pero las más importantes para la célula suelen aparecer en forma de polímeros complejos y no como moléculas simples: las cadenas de aminoácidos forman las proteínas y los polinucleótidos forman el ADN y el ARN. La formación de polímeros es uno de los grandes problemas en las teorías del origen de la vida, puesto que no se ha encontrado un sistema de polimerización prebiótico que satisfaga completamente. Habría varias posibilidades: a) Calor sobre compuestos secos. Hay experimentos en los cuales la aplicación de calor sobre componentes secos lleva a la aparición de polímeros orgánicos. b) Catálisis por superficies minerales. La catálisis por parte de estructuras minerales como polifosfatos o minerales catalíticos produce polímeros con secuencias aleatorias. Los minerales podrían haber servido como lugares de protección frente a las adversas condiciones atmosféricas y como sustratos o moldes para la polimerización y las reacciones químicas. En este punto se ha demostrado que ciertas arcillas son capaces de atraer moléculas orgánicas, entre ellas el ARN, y favorecer su polimerización. c) Fumarolas. El proceso de formación de moléculas orgánicas se produce hoy en día en las fumarolas, que bajo unas condiciones de presión y calor elevados, con la ayuda de minerales, pueden producir polímeros orgánicos. d) Fuentes hidrotermales de agua dulce. Estos serían lugares de agua dulce en contacto con fuentes volcánicas donde sería posible la hidratación-desecación constante de reductos que podrían aumentar la concentración de moléculas orgánicas y favorecer la reacción entre ellas a altas temperaturas. Este ambiente es más favorable para formar membranas espontáneamente a partir de lípidos anfipáticos que el agua de mar. Una idea que apoya el nacimiento de la célula en aguas dulces es la ausencia de iones divalentes como el calcio y el magnesio, los cuales desestabilizan las membranas y dificultan su autoensamblado. e) Membranas lipídicas. Distintos experimentos en laboratorio muestran que las membranas lipídicas, como las que hoy tienen las células, podrían ser centros de atracción, selección y concentración de moléculas simples. Sobre estas membranas, las moléculas estarían próximas y en un entorno aportado por los lípidos que favorecería las reacciones químicas como las que se dan entre bases de nucleótidos y entre aminoácidos. Esta posibilidad es interesante puesto que resolvería el problema de cómo las membranas englobaron a unas moléculas determinadas y no a otras, y como se llegó a la primera protocélula.
3.- Membrana celular. Uno de los principales eventos en el origen de las células fue el desarrollo de una envuelta que aislara un medio interno y otro externo. Esto tiene muchas ventajas: a) permite tener todos los componentes necesarios próximos para las reacciones metabólicas y se hace más eficiente el proceso de replicación; b) se evita que variantes ventajosas de moléculas orgánicas sean aprovechadas por grupos competidores. Esto es el egoísmo evolutivo; c) se gana una cierta independencia respecto a las alteraciones del medio externo favoreciendo la homeostasis interna. Las membranas lipídicas son fáciles de producir a partir de moléculas de ácidos grasos anfipáticos, es decir, que tienen una parte cargada eléctricamente y otra es hidrófoba. Los lípidos iniciales es probable que no fueran similares a los actuales, puesto que los actuales se sintetizan por un proceso metabólico complejo. Cualquiera que fueran los primeros lípidos, estas moléculas se organizaron en soluciones acuosas formando películas finas. Las dos cadenas de ácidos grados que tienen los lípidos de membrana actuales permiten que se ensamblen en capas cuando están a una concentración de micromolar. Si tuvieran una sola cadena tendrían que estar en rangos de milimolar para formar membranas. Una longitud de cadena entre 14 y 10 carbonos en el ácido graso es la idónea para una mayor estabilidad. Adaptar la fluidez a una temperatura actual lo facilita los dobles enlaces y la presencia de colesterol. Los tipos de lípidos y condiciones en los que se organizaron para formar las primeras membranas se desconocen. Las membranas de los organismos vivos poseen las mismas moléculas anfipáticas: glicerofosfolípidos y esfingolípidos.
Mundo ARN Protocélulas
Hay dos posibilidades para a la asociación entre moléculas como nucleótidos y aminoácidos y las membranas. a) Podemos especular que estas membranas inciales formaron pequeñas bolsas o vesículas que englobaron poblaciones de moléculas. En otro momento, debido al crecimiento de su contenido interno, estas bolsas debieron adquirir la capacidad de estrangularse y dar dos unidades hijas con características semejantes a la parental. Las poblaciones de moléculas que englobaban deberían tener la capacidad incrementar su número. Este incremento se produciría por reacciones moleculares internas gracias a que las membranas serían permeables a moléculas pequeñas pero no a los polímeros, creados internamente, a los cuales no les sería fácil escapar. b) Otra posibilidad es que hubo una asociación inicial de moléculas orgánicas simples con membranas de lípidos. Las membranas favorecen la concentración y la producción de reacciones entre ellas. Este sistema de polímeros (oligopéptidos y oligonucleótidos) y membranas fue ganando en complejidad y dependencia hasta que algunos polímeros atravesaron la propia membrana y quedaron en su interior. El proceso de crecimiento y estrangulamiento de las vesículas con los polímeros sucedería de forma controlada posteriormente. Si esto fue así, cambiaría la el orden de los acontecimientos puesto que las membranas serían las verdaderos protagonistas para la formación de las primeras protocélulas.
Celularidad
Modelo de "la vida fuera de la vesícula" en el que la membrana es el elemento clave para seleccionar, concentrar y favorecer las reacciones de las moléculas (modificado de Black y Blosser, 2016)
4.- Autorreplicación de las primeras moléculas. Una de las características que debieron adquirir los polímeros para aumentar su número y conseguir copias de sí mismos debió ser la capacidad de autorreplicación, es decir, la posibilidad de producir otras moléculas similares o idénticas a ellas mismas. Con ello se consigue la propiedad de la transmisión de la información, que es una de las propiedades de la vida. Esta información transmitida sería de dos tipos: secuencia de monómeros y organización espacial del polímero (¿genotipo y fenotipo?). Los materiales y la energía para producir tales descendientes estarían libres en el medio y podrían atravesar fácilmente las membranas. Dentro de cada vesícula membranosa se crearían réplicas moleculares más o menos exactas al original. Algunas de ellas tendrían mayor capacidad para autorreplicarse por lo que su proporción llegaría ser mayor que las otras variantes. Así, diferentes vesículas membranosas se enriquecerían en ciertas variantes moleculares y competirían más eficientemente y aprovecharían más favorablemente los materiales libres. Con este proceso de competición por los recursos se emprende otra carrera que es la de la evolución darwiniana (variabilidad más selección natural), otra gran propiedad de la vida. Algunos autores proponen que no hubo una primera molécula autorreplicante sino sistemas de reacciones químicas con capacidad para aumentar el número de sus componentes moleculares y así crecer. Es decir, se replicaría el sistema de reacciones y sus componentes. Al dividirse la vesícula membranosa que los contiene producirían nuevos sistemas similares al primero (ver más abajo).
Mundo ARN Mundo ARN
ARN de transferencia
Éste es un esquema tridimensional de un ARN de transferencia existente en las células actuales. La secuencia de ribonucleótidos hace que se establezcan uniones por complementariedad de bases (trazos verdes). Esto le provoca una disposición tridimensional.
Suponiendo que el primer autorreplicante fuera una molécula, ¿qué molécula podría autorreplicarse? El ADN es básicamente inerte y tiene que ser manejado por las proteínas, que son las verdaderas trabajadoras de la célula. Las proteínas necesitan al ADN y el ADN a las proteínas. Entonces, ¿qué fue primero el huevo o la gallina (ADN o proteínas)? Todas las miradas se vuelven entonces al ARN. Esta idea se basa en la capacidad enzimática que poseen las moléculas de ARN (denominados por ello ribozimas). Por ejemplo, la maduración del ARNm de las células eucariotas por parte de las ribonucleoproteínas o la síntesis de proteínas en los ribosomas por parte de los ARN ribosómicos son ejemplos de actividad catalítica llevada a cabo por el ARN. No es descabellado, aunque improbable, pensar que existieran moléculas de ARN con la capacidad de unir ribonucleótidos y hacerlo con una secuencia similar de bases a las suya propia. Podrían usar como molde la complementariedad de su propia secuencia de nucleótidos. Pero además, la secuencia condiciona el plegamiento tridimensional de la molécula de ARN, lo que afecta a su estabilidad y a su actividad. Por tanto, la información de la secuencia de nucleótidos sería crucial para su estabilidad y capacidad de duplicación. Ocurrirían fallos durante la autorreplicación que producirían moléculas de ARN con distintas secuencias y por tanto con distintas propiedades. Entre ellas comenzaría una competencia darwininiana por los recursos. Así, la sopa inicial dentro de la vesícula se iría enriqueciendo en aquellas moléculas y sus variantes que se replicaran con más facilidad. Las secuencias ya no serían aleatorias sino que, el "genotipo" (la secuencia de bases) y el "fenotipo" (estructura espacial) conferirían a la molécula determinadas propiedades ventajosas. Por todo ello se ha propuesto que existió un mundo dominado por el ARN en la etapa prebiótica.
Sin embargo, un "mundo metabólico" basado en sistemas de reacciones químicas también tiene apoyos. La replicación no sería la característica de una molécula concreta sino de todo un sistema de moléculas. Para ello se necesitaría un aislamiento del medio externo (secuestro en una vesícula membranosa), capacidad de tomar energía y moléculas del medio, crecer, dividirse y la capacidad para aumentar su complejidad de reacciones químicas. Pero los defensores de esta teoría no niegan la existencia del ARN como molécula clave en el origen de la vida. Estos sistemas metabólicos podrían ser previos al entramado de reacciones del ARN, del que serían precursores. De hecho, algunos autores proponen que el ARN fue un parásito de estas reacciones que posteriormente pasó a formar parte de ellas y tomar el control.
5.- Interacciones entre moléculas diferentes. Independientemente de la molécula o moléculas con capacidad de autorreplicación y competición, tendría que darse en algún momento la interacción entre molélulas diferentes (proteínas, ADN, ARN, lípidos y azúcares) y la formación de complejos y reacciones heterogéneas. Podríamos pensar en asociaciones de moléculas de ARN que en unión de polipéptidos favorecieron la replicación, o rutas metabólicas que interaccionaron con el ARN o el ADN. Con estas interaccinoes se seleccionarían no ya unas pocas moléculas sino grupos heterogéneos de moléculas que actuarían en cooperación, coevolución. Esto podría haber ocurrido hace 3,5 a 4 mil millones de años.
6.- Código genético. En algún momento el ARN tuvo que intervenir en la síntesis de las proteínas. Para ello hubo que inventar un código que identificara una secuencia de nucleótidos con un aminoácido determinado. Esto es lo que actualmente se denomina el código genético, en el que tres bases nucleotídicas codifican para un aminoácido determinado. Este código parece arbitrario y es prácticamente universal para todos los organismos vivientes, lo cual sugiere que hubo una sola organización de moléculas de ARN y péptidos, de todas las posibles, que dieron lugar a todos los organismos actuales. A estas protocélulas de las cuales partieron todas las demás células que conocemos hoy en día se les denomina LUCA (en inglés: Last universal common ancestor).
7.- ADN como principal soporte de la información. Actualmente la información que transmiten los organismos a sus descendencia está codificada en forma de ADN y no de ARN o proteínas. El ADN tiene una serie de ventajas sobre el ARN: al ser el ADN una doble hélice es más estable, es más fácil de replicar y permite reparaciones más eficientes. Se conocen enzimas que son capaces de realizar el paso de información contenida en el ARN al ADN, son la retrotranscriptasas. Estas enzimas las contienen muchos virus, como el del SIDA, con un genoma de ARN que se convierte en ADN tras la infección. En algún momento de la evolución, antes de LUCA, debió darse el paso de la información desde el ARN al ADN, y quedar este último como base para la conservación, lectura y transmisión de la información de las protocélulas.
Existen muchas incertidumbres y controversias sobre todos y cada uno de estos pasos, y otros que no aparecen. Disputas que cuestionan el orden de los acontecimientos, el protagonismo de las moléculas, las condiciones necesarias para cada uno de ellos, etcétera. No cabe duda de que desentrañar el origen de la vida es un reto científico de primer orden.

https://mmegias.webs.uvigo.es/5-celulas/1-origen_celula.php


Origen de la célula

Se forma la Tierra

1. Nadie sabe con exactitud cuándo o cómo comenzó su existencia la célulaviva. Las evidencias disponibles sugieren que los precursores de las primeras células surgieron en forma espontánea, mediante el autoensamblaje de moléculas simples.
2. El Universo habría comenzado con una gran explosión o “Big Bang”. Antes de esta explosión, probablemente toda la energía y la materia se encontraban en forma de energía pura, comprimida en un punto. Según este modelo, a medida que el Universo se expandió, su temperatura descendió y la energía se fue convirtiendo en materia. Primero habrían aparecido las partículas subatómicas, los neutrones y los protones, luego se habrían combinado formando los núcleos atómicos. Más tarde cuando la temperatura descendió aún más, la carga positiva de los protones habría atraído a los electrones, cargados negativamente, y se habrían formado los primeros átomos.
3. Hace unos 4.600 millones de años, una condensación de gas y polvo habría comenzado a formar el Sistema Solar. Al enfriarse la Tierra primitiva, los materiales más pesados se habrían reunido en un denso núcleo central y en la superficie se formó una corteza. Se postula que la atmósfera estaba formada principalmente por hidrógeno y helio, que pronto escaparon al espacio y fueron reemplazados por los gases presentes en las emanaciones volcánicas y el agua en estado de vapor proveniente del interior del planeta. Al bajar aún más la temperatura, el agua se condensó y formó los océanos.

Comienza la vida

4. Toda la vida que existe en el planeta habita un área denominada biosferaque abarca toda la superficie terrestre, y se extiende entre 8 y 10 kilómetros hacia el espacio y otro tanto hacia las profundidades del mar.
5. Las células vivas poseen cuatro características que las distinguen de otros sistemas químicos: una membrana que las separa del ambiente circundante y les permite mantener su identidad bioquímica; enzimas esenciales para las reacciones químicas de las que depende la vida; capacidad para replicarse generación tras generación; posibilidad de evolucionar a partir de la producción de descendencia con variación.
6. El primer conjunto de hipótesis contrastables acerca del origen de la vida fue propuesto por A. I. Oparin y J. B. Haldane, quienes postularon que la aparición de la vida fue precedida por un período de evolución química. Probablemente no había o había muy poco oxígeno libre y los elementos mayoritarios que forman parte de todos los seres vivos (hidrógeno, oxígeno, carbono y nitrógeno) estaban disponibles en al aire o en el agua. La energía abundaba en forma de calor, rayos, radiactividad y radiación solar. En estas condiciones, en microambientes relativamente protegidos de las severas condiciones ambientales, se habrían formado moléculas de complejidad creciente. La evolución química habría sido seguida por la evolución prebiológica de los sistemas plurimoleculares. La complejidad siguió aumentando y condujo a la aparición de un metabolismo sencillo.
7. En 1953, Stanley Miller aportó las primeras evidencias experimentales a favor de la teoría de Oparin. Miller demostró que casi cualquier fuente de energía puede convertir moléculas simples en una variedad de compuestos orgánicos complejos. Aunque ahora se considera que la atmósfera primitiva no se parecía a la que simuló Miller, su experimento demostró que la formación espontánea de sustancias orgánicas a partir de moléculas inorgánicas simples es posible.
Fig. 1-5. Experimento de Miller

Experimento de Miller.
Experimento de Miller.
(a) Fotografía y (b) esquema del experimento. Miller simuló en el laboratorio las condiciones que habrían imperado en la Tierra primitiva. Hizo circular el gas hidrógeno (H2), el vapor de agua, el metano (CH4) y el amoníaco (NH3) permanentemente entre el "océano" y la "atmósfera" de su dispositivo. El "océano" se calentaba, el agua se evaporaba y pasaba a la "atmósfera", donde se producían descargas eléctricas. El vapor de agua, al ser refrigerado, se condensaba y el agua líquida arrastraba las moléculas orgánicas recién formadas. Estas moléculas se concentraban en la parte del tubo que conducía al "océano". Al cabo de 24 horas, cerca de la mitad del carbono presente originalmente como metano se había convertido en aminoácidos y otras moléculas orgánicas. Ésta fue la primera evidencia experimental de la teoría de Oparin.

8. Cualquier forma ancestral de vida necesitó un rudimentario “manual de instrucciones” que pudiera ser copiado y transmitido de generación en generación. Esta característica es un requisito esencial para que ocurra el cambio evolutivo. Uno de los mayores desafíos de la investigación sobre el origen de la vida es encontrar una explicación posible acerca de la aparición y vinculación del DNA, el RNA y las proteínas. La idea más aceptada es que el RNA habría sido el primer polímero que realizó las tareas que el DNA y las proteínas llevan a cabo actualmente en las células.
9. Los fósiles más antiguos que se han encontrado son semejantes a las bacterias actuales y tienen una antigüedad de 3.500 millones de años. También hay evidencias indirectas de que la vida ya existía hace unos 3.800 millones de años.
10. Algunos científicos consideran que hasta las formas de vida más simples son demasiado complejas para haberse originado en la Tierra. Su propuesta es que la vida provino del espacio exterior. Otra hipótesis plantea que lo que provino del espacio es la materia prima que dio lugar a la aparición de la vida.
Fig. 1-7. Ensamble de moléculas durante la evolución temprana de la vida
Ensamble de moléculas durante la evolución temprana de la vida.Posible camino evolutivo de sistemas simples autorreplicantes de moléculas de RNA hasta los sistemas presentes en las células actuales, en las cuales el DNA almacena la información genética y el RNA actúa como un intermediario en la síntesisde proteínas. En los inicios del proceso es posible que coexistieran una inmensa variedad de diferentes moléculas de RNA surgidas por errores de copia en su duplicación. Posteriormente, el RNA habría pasado a ejercer control sobre la síntesis de proteínas. En una etapa posterior, las proteínas habrían reemplazado al RNA en la función de acelerar las reacciones químicas. Mediante un proceso aún no esclarecido, la función de almacenar la información genética de gran parte de los organismos habría sido transferida del RNA al DNA, que es menos susceptible a la degradación química. Entre los ácidos nucleicos y las proteínas se habría desarrollado una compleja y cooperativa serie de interacciones de controles y equilibrios. Así, estos compuestos, en un proceso de autoorganización, habrían resultado complementarios.

Distintas estrategias energéticas: heterótrofos y autótrofos

11. Para satisfacer sus requerimientos energéticos, todos los animales, los hongos y muchos organismos unicelulares incorporan moléculas orgánicas del ambiente, las degradan y extraen de ellas la energía y los componentes para su estructura (organismos heterótrofos). Otros organismos sintetizan moléculas orgánicas ricas en energía a partir de sustancias inorgánicas simples (organismos autótrofos). Las plantas y algunos organismos unicelulares usan la luz del Sol como fuente de energía para las reacciones de síntesis química (organismos fotosintéticos). Algunas bacterias obtienen la energía de reacciones inorgánicas (organismos quimiosintéticos).
12. Muchos científicos sostienen que las primeras células vivas fueron heterótrofas. Al disminuir los recursos, la competencia aumentó y sobrevivieron las células que los usaban en forma más eficiente. Luego apareció otro tipo de célula, capaz de sintetizar su alimento. Esta ventaja adaptativa se propagó rápidamente.
13. Descubrimientos recientes sugieren que las primeras células podrían haber sido autotróficas, quimiosintéticas o fotosintéticas. Muchas de las bacterias extremófilas descubiertas en los últimos años habrían sobrevivido cómodamente en las condiciones de la Tierra primitiva.

Dos tipos de células: procariontes y eucariontes

14. La teoría celular afirma que:
  1. todos los organismos vivos están compuestos por una o más células;
  2. las reacciones químicas de los organismos, incluidos los procesos que liberan energía y las reacciones biosintéticas, ocurren dentro de las células;
  3. todas las células se originan de otras células y contienen el material genético que transmiten de una generación a otra.
15. Existen dos grandes tipos de células: las procariontes y las eucariontes. Entre las procariontes se reconocen dos grandes grupos: Bacteria y Archaea. Estos dos grupos y Eukarya son los tres grandes dominios que agrupan a los seres vivos. Los dos primeros agrupan procariotas unicelulares y coloniales y el último a todos los organismos formados por células eucariotas.
16. En las células procariontes, el material genético es una molécula grande y circular de DNA, con proteínas débilmente asociadas, que se ubica en una región definida (nucleoide).
17. En las células eucariontes, el DNA es lineal y está fuertemente unido a proteínas. Lo rodea una membrana doble, la envoltura nuclear, que lo separa del resto de la célula.
18. El citoplasma contiene una enorme variedad de moléculas y complejos moleculares especializados en distintas funciones. En las células eucarióticas, estas funciones se llevan a cabo en distintos compartimientos (organelas).
19. El registro fósil revela que los primeros organismos vivos eran células semejantes a los procariontes actuales. Estas células fueron las únicas formas de vida en nuestro planeta durante casi 2.000 millones de años, hasta que aparecieron los eucariontes.
20. Según la teoría endosimbiótica, algunas organelas eucarióticas, especialmente las mitocondrias y los cloroplastos, fueron en tiempos pasados bacterias de vida libre que luego se alojaron dentro de otras células. La similitud entre el DNA, las enzimas y la forma de reproducción de esas organelas y las bacterias apoyan esta teoría.
Fig. 1-14. Teoría endosimbiótica
Teoría endosimbiótica.
Según la teoría endosimbiótica, hace aproximadamente 2.500 millones de años, cuando la atmósfera era ya rica en oxígeno proveniente de la actividad fotosintética de las cianobacterias, ciertas células procariontes habrían comenzado a utilizar este gas en sus procesos metabólicos de obtención de energía. La capacidad de utilizar el oxígeno habría conferido una gran ventaja a las células aeróbicas, que habrían prosperado y proliferado. En algún momento, estos procariontes aeróbicos habrían sido fagocitados por células de mayor tamaño, sin que se produjera una digestiónposterior. Algunas de estas asociaciones simbióticas habrían resultado favorables: los pequeños huéspedes aeróbicos habrían hallado nutrientes y protección en las células hospedadoras, mientras que éstas obtenían beneficios energéticos de su hospedador. Esto les permitió conquistar nuevos ambientes. Así, células procarióticas respiradoras originalmente independientes se habrían transformado en las actuales mitocondrias.
21. La complejidad de la célula eucariótica posibilitó la evolución de organismos multicelulares. El metabolismo eucariótico es más eficiente porque la presencia de membranas permite repartir las funciones en compartimientos específicos. Los eucariontes son de mayor tamaño y llevan muchísima más información genética que los procariontes.

En busca del ancestro común

22. La construcción de un árbol genealógico que refleje el parentesco entre Bacteria, Archaea y Eukarya muestra que ninguna de las ramas del árbol genealógico es anterior a las otras. Todas derivan de un único ancestro común, al que se ha denominado progenote, ancestro universal o LUCA. Las diferencias existentes entre bacterias, archaeas y eucariontes serían el resultado de la evolución independiente de cada uno de estos grupos.
23. Según el registro fósil, los primeros organismos multicelulares aparecieron hace 750 millones de años. Se considera que los principales grupos de organismos multicelulares evolucionaron a partir de diferentes eucariontes unicelulares.
Fig. 1-15. Representación del tiempo biológico
Representación del tiempo biológico
Esta representación del tiempo biológico en horas muestra los sucesos más importantes de la historia biológica durante los 4.600 millones de años de la Tierra condensados en un día. La vida aparece relativamente temprano, antes de las 6 de la mañana, en una escala de tiempo de 24 horas. Los primeros seres pluricelulares no surgen hasta bien entrada la tarde y Homo, el género al cual pertenecemos los humanos, hace su aparición casi al acabar el día, a sólo 30 segundos de la medianoche.

¿Qué es la vida?

24. Los seres vivos son sistemas altamente organizados y complejos, que obedecen a las leyes de la física y la química, pero presentan propiedades que no pueden ser anticipadas a partir de sus componentes individuales (átomos y moléculas).
25. Todos los seres vivos están compuestos de una o más células. Las células vivas especializadas se organizan en tejidos, los tejidos en órganos y éstos, en organismos. Al interactuar unos con otros, los organismos forman parte de un sistema más vasto de organización, las poblaciones. Éstas, a su vez, constituyen las comunidades que forman los ecosistemas. El nivel último de organización es la biosfera, que comprende a todos los seres vivos, sus interacciones y las características físicas del ambiente.
26. Los seres vivos funcionan como un sistema abierto que intercambia sustancias y energía con el medio externo. Las sustancias que ingresan a un organismo se incorporan a una red de reacciones químicas en las que son degradadas o usadas como unidades para la construcción de compuestos más complejos. Los organismos vivos son “expertos” en la conversión energética. El conjunto de reacciones químicas y de transformaciones de energía, incluidas la síntesis y degradación de moléculas, constituyen el metabolismo.
27. La capacidad de mantener un medio interno estable es otra propiedad crucial para la vida. Los seres vivos también intercambian información y responden a las condiciones ambientales.
28. Una de las características más notables de los seres vivos, es su capacidad de reproducirse. Los organismos atraviesan un ciclo vital en el cual crecen, se desarrollan y se reproducen. Durante este ciclo, los organismos se transforman. La reproducción ocurre con una fidelidad sorprendente, pero produce variaciones que suministran la materia prima sobre la que ocurre la evolución.


http://www.curtisbiologia.com/node/70


Resultado de imagen de ORIGEN DE LA CÉLULA

Resultado de imagen de ORIGEN DE LA CÉLULA

No hay comentarios:

Publicar un comentario