miércoles, 21 de noviembre de 2018

ASTRONOMÍA - OBJETOS ASTRONÓMICOS

AGUJEROS NEGROS

Un agujero negro binario es un sistema que consiste en dos agujeros negros orbitando cercanamente alrededor de ellos. Al igual que los mismos agujeros negros, los agujeros negros binarios son usualmente divididos en agujeros negros binarios estelares, que son remanentes un sistema de estrellas binarias masivas; y los agujeros negros masivosbinarios, los cuales se cree que son el resultado de la fusión de galaxias.
Por muchos años fue de gran dificultad probar la existencia de los agujeros negros binarios debido a la naturaleza misma de los agujeros negros, y los limitados recursos de detección disponibles. Durante finales del siglo XX y principios del siglo XXI, la búsqueda de agujeros negros binarios cobró gran interés científico debido a que estos serían potencialmente la mayor fuente de ondas gravitacionales del universo, con lo cual se probaría la existencia de estas últimas.
La existencia de los agujeros negros binarios de masas estelares y la existencia de las ondas gravitacionales fueron finalmente confirmadas en febrero de 2016, luego de que el observatorio de ondas gravitacionales, LIGO, detectara en septiembre de 2015 una señal que fue resultado de la emanación de ondas gravitacionales generándose por la fusión de dos agujeros negros. Esta señal fue luego bautizada como GW150914123
También se han hallado algunos candidatos a agujeros negros supermasivos binarios, pero estos no han sido categóricamente confirmados.


Ocurrencia[editar]

Representación artística de la fusión de un agujero negro.
Se cree que los agujeros negros binarios supermasivos se forman por la fusión de galaxias. Algunos probables candidatos a agujeros negros binarios son galaxias con dos núcleos que aún se hallan lejos, como es el caso de la galaxia NGC 6240.5​ Otros candidatos a agujeros negros binarios más cercanos podrían ser las galaxias con dos líneas de emisión, los ejemplos incluyen a la galaxia SDSS J104807.74+005543.56​ y EGSD2 J142033.66 525917.5.5
Otros núcleos galácticos tienen periodos de emisión que sugieren la existencia de un gran objeto orbitando un agujero negro central, como por ejemplo en la galaxia OJ287.7
El cuásar PG 1302-102 parece tener un agujero negro binario con un periodo orbital de 1,900 días.8

El problema del parsec final[editar]

La separación natural de dos agujeros negros supermasivos en el centro de una galaxia es de unas pocas decenas de parsecs. esta es la separación a la cual los dos agujeros negros forman un sistema binario que debe perder energía de alguna forma antes que los agujeros negros puedan unirse.9​ Para generara ondas gravitacionales a un nivel significativo, el sistema binario tendría que achicarse a una distancia mucho menor, aproximadamente 0.01 – 0.001 parsecs. Este es llamado el “problema del parsec final”.10​ Han sido propuestas ciertas soluciones para resolver este problema, la mayoría de las cuales involucran la interacción de los agujeros negros masivos con la materia que los rodean, como estrellas o gas, los cuales podrían extraer energía del sistema binario permitiendo que este se encoja.

Forma[editar]

Otro de los problemas a resolver en cuanto a los agujeros negros binarios es la topología del horizonte de eventos de ambos durante la fase de fusión. En modelos matemáticos, se agregan líneas geodésicas para ver si encuentra un horizonte de eventos.
Mientras dos agujeros negros se acercan mutuamente, de los horizontes de eventos de ambos sobresale una parte en forma de pico de embudo con dirección a encontrarse mutuamente. Estas partes que sobresalen se van haciendo cada vez más y más largas y angostas hasta que se encuentran la una con la otra, formando una X alargada en el punto donde se tocan. Ambas partes se juntan en un hilo delgado y el punto de conexión se expande hasta una forma cilíndrica, llamada puente.1111
Las simulaciones desde 2011 no han producido ningún horizonte de eventos con una forma toroidal, aunque otros sugieren que sería posible si, por ejemplo, varios agujeros negros orbitando en el mismo círculo colisionan.

Ciclo de vida[editar]

La primera fase del agujero negro binario dura mucho tiempo, durante esta se observa una órbita que se va encogiendo gradualmente. Durante esta fase, los agujeros negros se encuentran bien distanciados entre ellos, así que las ondas gravitacionales emitidas son bien débiles. Además del encogimiento de las órbitas, se pierde un momento angular adicional debido a las interacciones con otra materia presente, como estrellas. Mientras las órbitas se achican, tanto la velocidad de los agujeros negros como la emisión de ondas gravitacionales se incrementan. Cuando los agujeros están lo suficientemente cerca se fusionan liberando una gran cantidad de energía en forma de ondas gravitacionales, alcanzando su pico más alto de emisión en este punto. Inmediatamente después de fusionarse, el ahora único agujero negro comenzará a vibrar hasta pasar de una forma elongada a una esférica. Las distorsiones de la forma esférica se reducen rápidamente hasta que se estabiliza.

Observaciones[editar]

En noviembre de 2015, se dio la primera detección del choque de dos agujeros negros binarios de masas estelares, por parte del observatorio de ondas gravitacionales, LIGO.121314​ Ambos agujeros negros tenían un estimado de entre 29 y 36 veces la masa del sol, y se fusionaron para formar un único agujero negro de aproximadamente 62 veces la masa del sol.15​ Tres masas solares fueron convertidas en radiación gravitacional en la última fracción de segundo, llegando a liberar un máximo de 200 masas solares por segundo,12​ lo cual es unas 50 veces el poder generado por todas las estrellas del universo observable.











Un agujero negro cargado es un agujero negro que posee carga eléctrica. Aunque la repulsión electromagnética en masas comprimidas y eléctricamente cargadas es dramáticamente mayor que atracción gravitacional (por cerca de 40 clases de magnitudes), no se espera que agujeros negros con una carga eléctrica tan significativa puedan ser formados en la naturaleza.
Un agujero negro cargado es uno de los 3 posibles agujeros negros que podrían existir en la teoría de la gravedad llamada relatividad general. Los agujeros negros se caracterizan por 3 (y solo 3) cualidades, las que son:
Un artículo especial, matemáticamente orientado, describe la métrica de Reissner-Nordstrom para un agujero negro cargado sin rotación.
Las soluciones de la ecuación del campo de Einstein para el campo gravitacional de un punto de masa eléctricamente cargado (con momento angular igual a cero) en un espacio vacío fue obtenida en 1918 por Hans Reissner y Gunnar Nordstrom, no mucho tiempos después, Karl Schwarzschild encontró la métrica de Schwarzschild como solución para el punto de masa sin carga eléctrica ni momento angular.











Agujero negro de Kerr.
Un agujero negro de Kerr o agujero negro en rotación es una región de agujero negro presente en el espacio-tiempo de Kerr, cuando el objeto másico tiene un radio inferior a cierta magnitud, por encima de este radio el universo de Kerr no presenta región de agujero negro. Un agujero negro de Kerr es una región no isótropaque queda delimitada por un horizonte de sucesos y una ergoesferapresentando notables diferencias con respecto al agujero negro de Schwarzschild. Esta nueva frontera describe una región donde la luzaún puede escapar pero cuyo giro induce altas energías en los fotones que la cruzan. Debido a la conservación del momento angular, este espacio forma un elipsoide, en cuyo interior se encuentra un solo horizonte de sucesos con su respectiva singularidad, que debido a la rotación tiene forma de anillo.
El espacio-tiempo de Kerr corresponde al campo gravitatorio producido por una cuerpo másico de masa M y el momento angular J. Esta solución nace del éxito del matemático al resolver las ecuaciones de la relatividad en torno a un objeto masivo en rotación.


Formación[editar]

Un agujero negro de Kerr se forma por el colapso gravitacional de una estrella masiva rotativa, o por el colapso de una colección de estrellas o gas con un momento angular total distinto de cero. Como la mayoría de las estrellas giran, se espera que la mayor parte de los agujeros en la naturaleza sean agujeros negros en rotación. A finales de 2006, los astrónomos informaron las estimaciones de la velocidad de giro de un agujero negro en la revista Astrophysical Journal. Un agujero negro en la Vía Láctea, GRS 1915+105, puede girar entre 950 y 1150 veces por segundo, que se aproxima al límite superior teórico.

Universo de Kerr[editar]

Un universo de Kerr es una variedad pseudoriemanniana o espacio-tiempo donde se verifican las ecuaciones de campo de Einstein en el vacío, usando las coordenadas de Boyer-Lindquist viene dada por:
 
donde:
  • ,
  • ,
  • M es la masa del objeto masivo rotatorio,
  • a parámetro que describe la rapidez relativa de la rotación, que está relacionado al momento angular J por la relación a = J/M, y
  • c la velocidad de la luz, y G la constante de la gravitación universal.

Ergoesfera[editar]

La zona que delimita la frontera de la ergoesfera se llama límite estático. La ergoesfera delimita una zona en la que los observadores no pueden permanecer estáticos: sus sistemas de referencia son irremisiblemente arrastrados por la rotación del espacio-tiempo. Sin embargo, esta zona es intermedia entre el exterior y el horizonte de sucesos, por lo que los observadores pueden permanecer o salir de esta zona, sin caer necesariamente hacia la singularidad. Su frontera viene dada por:
donde:
  • rs es el perímetro de la ergoesfera,
  • M es la masa y
  • a es el cociente J/M (donde J es el momento angular).

Antes del límite estático y más allá...[editar]

  • Fuera de la ergoesfera se genera, en caso de tener una estrella compañera, otra zona llamada disco de acreción, donde la materia interestelar que es atraída por la fuerte curvatura del agujero negro, se arremolina alrededor alcanzando intensas energías. Se ha especulado que esto puede llevar a que se generen intensas corrientes eléctricas, cuyo flujo daría lugar a un poderoso campo magnético que actuaría como un electroimán gigante.
  • Entre la ergoesfera y el horizonte de sucesos, se forma una región de dirección obligada, que atrae inevitablemente a todo objeto que en ella se encuentre, y cuya turbulencia es enorme debido a la rotación del agujero negro. Ya en el borde interno, o límite del horizonte de sucesos, nada escapa de la fuerza gravitatoriagenerada por la singularidad..

La posibilidad de viajar en el tiempo[editar]

Todo en el universo gira, por lo que no es muy probable que los agujeros negros de Schwarzschild existan. Si un objeto fuese absorbido por un agujero negro de Schwarzschild, no habría manera de evitar la singularidad. Cuando el objeto llega a la singularidad se aplasta a la densidad infinita y volumen cero, y la masa del objeto se añade al agujero negro. En el caso de los agujeros negros en rotación, sin embargo, es posible evitar la singularidad. Una nave que entre en el agujero negro debe coincidir con la dirección y la velocidad de rotación del agujero negro. Al hacer esto, le será posible "remolinear" en torno a la singularidad letal y salir del agujero negro en una parte diferente del espacio-tiempo. Puede parecer absurdo que la nave pueda salir del agujero negro en sí, ya que requeriría una velocidad infinita. Sin embargo, el agujero negro en rotación distorsiona el espacio-tiempo para que la singularidad se pueda evitar, y que la nave pueda salir del agujero negro a velocidades razonables. La rotación del agujero negro también deforma el espacio-tiempo con la creación de dos horizontes de sucesos, en lugar de uno como los agujeros negros de Schwarzschild. El sentido de giro del agujero negro puede o no puede afectar si la nave va hacia adelante o hacia atrás en el tiempo. Sin embargo, la nave no puede salir del agujero negro en un momento diferente y el mismo punto en el espacio. El agujero negro se puede conectar con otra región del universo por un agujero blanco, por lo que la métrica completa actuaría como un agujero de gusano. Así como nada puede escapar de un agujero negro, nada puede entrar en un agujero blanco. (La existencia de agujeros blancos es dudosa, ya que parece que violan la segunda ley de la termodinámica.) Esto implica que una nave que iba por un agujero negro en rotación puede salir del agujero blanco en una región diferente del espacio-tiempo, algunos creen que esto permitiría viajar en el tiempo.
El problema principal con esta posibilidad es que no hay ningún agujero negro cerca de la Tierra. El agujero negro más cercano parece estar en el sistema de estrellas binarias V4641 Sagittarii. La distancia que originalmente se pensaba era de 1.600 años luz de la Tierra, pero cálculos recientes han demostrado que está mucho más lejos. Por las grandes distancias que tienen que ser cubiertas no se espera que esté a nuestro alcance tecnológico en un futuro previsible. Hay otros problemas que deben superarse también. Por ejemplo, un agujero negro en rotación de masa de 10 masas solares, con un diámetro de 2,7 kilómetros, sólo permite un radio de navegación de 600 metros. Un agujero negro estelar de los remanentes de supernovas tiene aproximadamente un diámetro de 2 kilómetros y sólo permite un radio de navegación de 30 metros. Otro problema es la rapidez con que gira el agujero negro, ya que los agujeros negros no puede verse directamente, no hay forma de saber la velocidad angular. El agujero negro también puede girar a velocidades relativistas, por lo que no sería fácil entrar y salir del agujero negro. Como se explicó anteriormente, el agujero negro en rotación GRS 1915+105 puede girar 1150 veces por segundo, que es de alrededor de 98,5% de la velocidad de la luz.
Para calcular el diámetro aproximado de un agujero negro, en primer lugar, se debe poner atención en que la masa original de la estrella en colapso se debe tener en cuenta. Si la estrella no llega a los límites estándares para colapsar en un agujero negro, entonces sólo una enana blanca o una estrella de neutrones. La fórmula es:
donde:
  • G es la constante gravitacional (6,673×10−11),
  • M es la masa de la estrella original, y
  • c es la velocidad de la luz.
Para que una estrella masiva alcance un estado de agujero negro en un futuro lejano, debe tener una masa de, al menos, tres veces la masa del sol Agujero negro estelar . Debido a que la masa del Sol es 1,99×1033 gramos, la masa de la estrella sería 5,97×1033 gramos. Sustituyendo en la ecuación, se tiene:
donde la expresión de 9×1020 representa el cuadrado de c, medido en centímetros por segundo.
Esta solución, sin embargo, es sólo el diámetro del agujero negro. La apertura navegable es considerablemente menor, sólo 180 metros. La masa de la estrella original en comparación con la del Sol es proporcional a la apertura navegable por un factor de 60 metros. Por lo tanto, si el Sol se convirtiera en un agujero negro en el futuro distante, habría una apertura navegable de 60 metros. Así, incluso en estrellas muy masivas, la apertura navegable es muy pequeña en comparación con el diámetro del agujero negro. Si la nave fuese más grande que la abertura navegable, es inevitable que se encontrara con la singularidad y se desplomara hasta el volumen cero y densidad infinita.

No hay comentarios:

Publicar un comentario