sábado, 29 de octubre de 2016

Biología - Radiobiología

La radiobiología es la ciencia que estudia los efectos que se producen en los seres vivos tras la exposición a energía procedente de las radiaciones ionizantes.
Dos grandes razones que han impulsado la investigación de los efectos biológicos de las radiaciones ionizantes sobre la materia viva son la protección radiológica, para poder utilizarlas de forma segura en aplicaciones médicas o industriales que las requieran, y la radioterapia donde las radiaciones ionizantes se utilizan principalmente para el tratamiento de neoplasias buscando preservar al máximo los órganos críticos (tejidosano).
Espectro electromagnético en diagrama que ilustra1 que la radiación ionizante aparece en frecuencias superiores a  Hz.

Características de los efectos biológicos de las radiaciones ionizantes

  1. Aleatoriedad: La interacción de la radiación con las células es una función de probabilidad y tiene lugar al azar. Un fotón o partícula puede alcanzar a una célula o a otra, dañarla o no y, de dañarla, puede afectarla en el núcleo o en el citoplasma.
  2. Rápido depósito de energía: El depósito de energía a la célula ocurre en un tiempo muy corto, en fracciones de millonésimas de segundo.
  3. No selectividad: La radiación no muestra predilección por ninguna parte o biomolécula, es decir, la interacción no es selectiva.
  4. Inespecificidad lesiva: Las lesiones de las radiaciones ionizantes son siempre inespecíficas o lo que es lo mismo esas lesiones pueden ser producidas por otras causas físicas.
  5. Latencia: Las alteraciones biológicas en una célula que resultan por la radiación no son inmediatas, tardan tiempo en hacerse visibles a esto se le llama "tiempo de latencia" y puede ser desde unos pocos minutos o muchos años, dependiendo de la dosis y tiempo de exposición.

Tipos de efectos de la radiación sobre los seres vivos

Los efectos de las radiaciones ionizantes sobre los seres vivos se pueden clasificar desde distintos puntos de vista:

Según el tiempo de aparición

  • Precoces: Aparecen en minutos u horas después de haberse expuesto a la radiación, por ejemplo eritema cutáneo, náuseas.
  • Tardíos: Aparecen meses u años después de la exposición, por ejemplo cáncer radioinducido, radiodermitis crónica, mutaciones genéticas.

Desde el punto de vista biológico

  • Efectos somáticos: Sólo se manifiestan en el individuo que ha sido sometido a la exposición de radiaciones ionizantes por ejemplo el eritema.
  • Efecto hereditario: No se manifiestan en el individuo que ha sido expuesto a la radiación, sino en su descendencia, ya que lesionan las células germinales del individuo expuesto, por ejemplo las mutaciones que afectan a células germinales (espermatozoides y óvulos). Vale aclarar que tales efectos solo se han verificado en insectos y ratones y no en seres humanos, por ahora.

Dependientes de la dosis

  • Efecto estocástico: Son efectos absolutamente aleatorios, probabilísticos; pudiendo aparecer tras la exposición a pequeñas dosis de radiación ionizante. No necesitan una dosis umbral determinada para producirse; si bien al aumentar la dosis aumenta la probabilidad de aparición de estos efectos, que suelen ser de tipo tardío.
    Los efectos estocásticos son el cáncer radioinducido, las mutaciones genéticas y los "efectos estocásticos no cancerígenos"2 , descubiertos recientemente, por ejemplo, daños pulmonares no cancerígenos de aparición tardía3 .
  • Efecto no estocástico: Se necesita una dosis umbral para producirlos, por debajo de la cual, la probabilidad de aparición de los mismos es muy baja. Suelen ser efectos precoces, por ejemplo el eritema cutáneo.

Etapas de la acción biológica de la radiación

Los efectos, de distinto orden4 , de las radiaciones ionizantes sobre la materia viva son el resultado final de las interacciones físicas (ionización y excitación) de los fotones o partículas con los átomos que la componen.
Los efectos de la radiación sobre los seres vivos pasan por sucesivas etapas que se ordenan aquí según su escala de tiempo, de menor a mayor.

Etapa Física

Es una respuesta inmediata que ocurre entre billonésimas y millonésimas de segundo. En esta etapa se produce la interacción de los electrones corticales con los fotones o partículas que constituyen el haz de radiación. Los electrones secundarios originados en la interacción, excitan e ionizan a otros átomos provocando una cascada de ionizaciones. Se estima que un Gray de dosis absorbida produce 100.000 ionizaciones en un volumen de 10 micras cúbicas.
  • La acción directa de la radiación es consecuencia de ionizaciones que se producen en los átomos que forman la molécula del ADN, fenómeno dominante en radiaciones con alta transferencia lineal de energía (LET) como las partículas alfabeta y protones, que inciden directamente sobre los átomos de las moléculas.
  • La acción indirecta de la radiación es la interacción del haz de radiación con otros átomos y moléculas de la célula como el agua, produciéndose radicales libresque al difundir hasta la molécula de ADN, la dañan de manera indirecta.

Etapa Química

Esta etapa es de un orden ligeramente mayor estando en una escala de entre una millonésima de segundo y un segundo. Es el proceso de la interacción de los radicales libres resultantes de la radiólisis del agua, que originan una serie de reacciones químicas con moléculas de solutos presentes en el medio irradiado y que producirán la inducción de un cierto grado de lesión biológica. Cuando las radiaciones interaccionan con la materia viva se producen fenómenos fisicoquímicos, pues la ionización y excitación suponen un incremento de energía para las moléculas, lo que compromete su estabilidad; dependiendo de la importancia de la molécula afectada, la lesión biológica será más o menos importante.

Radiólisis del agua

Los efectos biológicos derivan, en gran parte, de la acción de las radiaciones sobre el agua debida, por un lado, a la elevada presencia de las moléculas de agua en los seres vivos y por otro, al hecho de ejercer como disolvente de otras moléculas cuando tienen lugar importantes reacciones químicas. Aunque la acción de las radiaciones sobre el agua o radiólisis del agua es una suma de procesos complejos, puede simplificarse resumiéndose en dos casos:
La descomposición molecular del agua y la formación de radicales libres.
En primer lugar, la radiación incidente sobre las moléculas de agua puede ionizarlas de tal manera que deja un ion H2O+ y un electrón libres. A este electrón se le llama electrón acuoso pues es muy lento ya que casi toda la energía se ha invertido en arrancarlo de la molécula. El ion H2O+ es muy inestable y rápidamente se descompone en un H+ y en un radical OH·. El electrón acuoso puede reaccionar con otras moléculas orgánicas o con una segunda molécula de agua produciendo radicales H· e iones hidroxilo OH-. Los radicales H· y OH· son moléculas neutras con gran reactividad química pues tienen un electrón desparejado que con muy poco esfuerzo tenderá a crear enlaces y robar así átomos a otras moléculas que en el peor de los casos podrían ser biomoléculas funcionales tales como proteínas o nucleótidos.
Los iones hidroxilo y los protones libres al ser partículas con cargas opuestas no son peligrosos pues tenderán a atraerse neutralizándose y formando de nuevo agua. Pero las moléculas radicales neutras sí son peligrosas pues quedarán a la deriva por la célula hasta afectar alguna molécula de importancia biológica5 .
Existe también la posibilidad más directa de formar los radicales libres con la sola excitación inducida a partir de la radiación de una molécula de agua. Los fenómenos que se producen al excitarse la molécula de agua, no son bien conocidos, pero teóricamente es posible la disociación de esta en radicales H· y OH·. De una manera u otra se forman radicales que no poseen electrones apareados, lo que los hace altamente reactivos, bien como agentes oxidantes o reductores.
Los radicales se distribuyen de forma heterogénea a lo largo de la trayectoria de radiación, dependiendo de la transferencia lineal de energía de radiación. Una buena parte de ellos se pierden en reacciones neutralizadoras combinándose de la siguiente forma.
Pero otros se propagan pudiendo llegar en última instancia a atacar las cadenas de ADN si estos han sido generados en el núcleo celular.

Efecto oxígeno

El oxígeno es un potente radiosensibilizante, es decir, aumenta el efecto de la irradiación. Cuando la TLE (LET en inglés) es baja, es necesario en ausencia de oxígeno (anoxia) multiplicar la dosis por un factor de 2,5 a 3 para obtener el mismo efecto que en presencia de oxígeno. Se llama OER (del inglés Oxigen Enhancement Ratio) o razón de aumento de oxígeno, al número de dosis necesaria para obtener el mismo efecto según condiciones de anoxia o de oxigenación normal. El oxígeno, al combinarse con los radicales libres, produce un aumento de la vida media de éstos y la fijación del daño radioinducido.

Moléculas donadores de H

Las moléculas donadores de H, como las que contienen grupo sulfhidrilo (-SH), pueden neutralizar los radicales libres, teniendo un papel protector, ya que se ha demostrado que el aumento o disminución en los niveles intracelulares de grupos -SH, origina cambios paralelos en la supervivencia celular. Actualmente se está probando el uso de ácido hialurónico con buenos resultados6 .

Etapa biológica

La etapa biológica se inicia con la activación de reacciones enzimáticas para reparar el daño producido por las radiaciones7 .
Algunas de estas lesiones serán reparadas y no influyen en la viabilidad celular y otras no serán reparadas con lo que se producirá la muerte celular en interfase, mitosis o incluso después de varias divisiones celulares tras la exposición a la radiación. Las consecuencias biológicas de la irradiación celular se manifiestan mucho tiempo después como:
  1. La respuesta de los tumores a la radioterapia.
  2. Los efectos secundarios agudos y tardíos asociados a la radioterapia.
  3. Desarrollo de neoplasias radioinducidas a largo plazo por mutaciones en células somáticas.
  4. Desarrollo, detectado solo en animales, de malformaciones genéticas en la descendencia por mutaciones en células germinales.
Radiobiología1.png

Lesiones radioinducidas y radiosensibilidad

Las interacciones de las radiaciones ionizantes pueden traducirse en alteraciones en la bioquímica celular, cadenas de hidratos de carbono, cambios estructurales en las proteínas, modificaciones en la actividad enzimática, que a su vez repercuten en alteraciones de la membrana celular, las mitocondrias y los demás orgánulos de la célula. Pero en donde más estudios se han realizado, es en las acciones de la radiación sobre los elementos del núcleo celular, sobre el ADN.

Tipo de lesiones radioinducidas

  • Lesión letal: Es irreversible e irreparable, que conduce necesariamente a la muerte de la célula.
  • Lesión subletal: En circunstancias normales puede ser reparada en las horas siguientes a la irradiación, salvo que la inducción de nuevas lesiones subletales por sucesivas fracciones de la dosis determine letalidad.
  • Lesión potencialmente letal: Es una lesión particular que está influida por las condiciones ambientales del tejido irradiado durante y después de la irradiación.
El número de lesiones inducidas por radiación es mucho mayor que el que ocasionalmente provoca la muerte de las células. La dosis letal media (D0) es la dosis de radiación que origina aproximadamente una lesión letal por célula y que destruirá al 63% de éstas, siendo aún viables el 37% restante. El valor de dosis letal media en células epiteliales humanas bien oxigenadas es de aproximadamente 3 Gy. El número de lesiones que se detectan en el ADN inmediatamente después de irradiar a una dosis "D0" ha sido estimado en:
  • Daño de bases: > 1000.
  • Roturas simples de cadena: Alrededor de 1000.
  • Roturas dobles de cadena: Alrededor de 40.

Lesiones radioinducidas en la molécula de ADN

El daño producido en el ADN por las radiaciones ionizantes es crítico para la muerte celular radioinducida. Existen múltiples pruebas que demuestran esta hipótesis como son:
  1. La dosis requerida para producir muerte celular es mucho mayor para el citoplasma que para el núcleo celular, donde se encuentra el ADN.
  2. El I125 y el H3 incorporado al ADN produce muerte celular.
  3. Las aberraciones cromosómicas radioinducidas son letales para las células.
  4. Las bases nitrogenadas alteradas producen radiosensibilización, como el 5-Fluoracilo.
  5. Las células con más cromosomas (aneuploides (tumorales)>diploides>haploides), es decir con más cantidad de ADN son más radioresistentes.
La lesión del ADN es de vital importancia en radioterapia para combatir las células tumorales.
La radiación produce distinto tipo de lesiones en el ADN entre las que destacan:
  • Rotura simple de cadena: Se produce en el enlace fosfodiéster, entre el fosfato y la desoxirribosa, o más frecuentemente entre la base nitrogenada y la pentosa. Es la lesión más abundante tras la radiación, produciéndose entre 500 y 1000 roturas simples de cadena (rsc) por Gray (Gy). Ocurre de tres a cuatro veces más frecuente en las células humanas bien oxigenadas que en las hipóxicas, y se pueden originar en una sola hebra o en las dos del ADN. Tras la rotura del enlace fosfodiester las dos cadenas de ADN se separan con penetración de moléculas de agua en esa zona, rompiéndose los puentes de hidrógeno entre las bases. A la rotura simple de cadena también se le llama lesión subletal, porque no existe relación alguna con la muerte celular.
  • Rotura doble de cadena: Es una lesión compleja que se produce como consecuencia de la rotura de las dos hebras del ADN en sitios muy próximos tras la interacción única o por combinación de dos roturas simples de cadenas complementarias, cuando una segunda partícula o fotón choca en la misma región del ADN antes de que la primera rotura simple haya tenido tiempo de ser reparada. La rotura doble es homóloga cuando ocurre al mismo nivel de pares de bases y heteróloga en caso contrario, siendo éstas más frecuentes. Cada Gy de radiación ocasiona unas 40 roturas dobles de cadena por célula, aunque puede esperarse una gran variabilidad. A la rdc se le llama también lesión letal, porque existe una estrecha relación con la muerte celular.
  • Lesión en las bases nitrogenadas: Consiste en la pérdida de una o más bases, la modificación química de alguna de ellas y la ligadura entre dos bases contiguas, formando dímeros. La mayor parte de estos tipos de lesión, de frecuencia elevada, entre 800 y 1000 por Gy, afectan a la timina. La radiosensibilidad, en orden decreciente de las bases, vendría dada por la secuencia Timina>Citosina>Adenina>Guanina. Son por otra parte lesiones susceptibles de reparación, proceso que cuando no transcurre correctamente puede provocar el desarrollo de una mutación puntual.
  • Entrecruzamiento del ADN y las proteínas: Es una lesión frecuente en la radiación que se produce unas 150 veces en la célula por Gray. Se localiza sore todo en regiones activas del ADN desde el punto de vista de la replicación o transcripción.
  • Daño múltiple localizado: Se origina con la formación de racimos de ionizaciones de cierto tamaño en la proximidad de la molécula del ADN. Combina una o más roturas dobles de cadena, con un número variable de roturas simples de cadena, lesiones de bases y azúcar, difíciles de reparar y que conduce a la muerte celular radioinducida.

Radiosensibilidad

La radiosensibilidad es la magnitud de respuesta de las estructuras biológicas, provocada por las radiaciones ionizantes. Un elemento biológico es más sensible cuanto mayor es su respuesta a una dosis determinada de radiación. El elemento biológico es más radiosensible cuando necesita menos dosis de radiación para alcanzar un efecto determinado. El concepto opuesto a radiosensibilidad, es radioresistencia. No existe célula ni tejido normal o patológico radioresistente de forma absoluta; pues si se aumenta ilimitadamente la dosis, siempre se puede alcanzar su destrucción. Administrando dosis mínimas en órganos o tejidos, se observaran diferentes grados de alteraciones morfológicas o funcionales, según las líneas celulares de que se trate.

Escala de radiosensibilidad

Las células presentan diferente grado de sensibilidad a la radiación, según la estirpe o línea celular. Tomando como punto de referencia, la muerte celular, pueden clasificarse en cinco grupos de mayor a menor sensibilidad:
  1. Muy radiosensibles: leucocitoseritroblastosespermatogonias.
  2. Relativamente radiosensibles: mielocitos, células de las criptas intestinales, células basales de la epidermis.
  3. Sensibilidad intermedia: células endoteliales, células de las glándulas gástricas, osteoblastos, condroblastos, espermatocitos, etc.
  4. Relativamente radioresistentes: granulocitososteocitosespermatozoideseritrocitos.
  5. Muy radioresistentes: fibrocitos, condrocitos, células musculares y nerviosas.

Leyes de radiosensibilidad

La radiosensibilidad celular está regida por una serie de determinantes que han sido estudiados y aplicados a todas las células del organismo, enunciándose unas leyes biológicas, que conceden mucha importancia a la actividad mitótica, siendo las más importantes:
  • Ley de Bergonié y Tribondeau: Está basada en la observación de irradiaciones sobre células testiculares, y en función de la actividad mitótica y diferenciación celular, se establecen los siguientes puntos:
  1. Una célula es tanto más radiosensible, cuanto mayor es su actividad reproductiva.
  2. Una célula es tanto más radiosensible, cuanto más largo sea su porvenir de división, es decir, cuantas más divisiones deba cumplir en el futuro.
  3. Una célula es tanto más radiosensible, cuanto menos diferenciadas estén desarrolladas sus funciones.
  • Ley de Ancel y Vitemberg: La sensibilidad de toda célula que ha de experimentar lesiones por radiación es la misma, pero el tiempo que tardan en aparecer las lesiones inducidas, varía según los distintos tipos de células. Los factores que influyen en el tiempo que tardan en aparecer las lesiones radioinducidas son:
  1. El estrés biológico que actúa sobre la célula. La actividad reproductiva representa un estrés biológico considerable.
  2. Las condiciones en que se encuentra la célula en el periodo de pre y post radiación.
  3. Ciclo celular: la situación de la célula en el momento en que se produce la irradiación, es un factor biológico que influye notablemente en la radiosensibilidad, así las células durante la fase de mitosis son más radiosensibles que durante la fase de síntesis.
  4. Radiosensibilidad hística: aunque la radiosensibilidad de un tejido es similar a la de las células que lo forman, no es una expresión directa de la misma, a lo que contribuyen varios factores. Un tejido u órgano está formado por dos componentes: el parénquina (compartimento que contiene las células características del tejido en cuestión) y el formado por tejido conjuntivo y vasos (mesénquima). Los dos tienen distinta radiosensibilidad. La complejidad del funcionamiento de un tejido, implica que en todo momento, coexisten en él, células en actividad mitótica, en reproducción y con buena o mala oxigenación.

Procesos que determinan la radiosensibilidad

Tras irradiación ocurren distintos procesos que pueden afectar a la viabilidad celular, a su funcionalidad o a la aparición de mutaciones que son: inducción del daño, procesamiento y manifestación del daño.
La radiosensibilidad es la forma en la que se manifiesta la acción biológica producida por la radiación sobre una determinada población celular o tejido. Datos experimentales demuestran que :
  1. El daño inicial sobre una célula por unidad de dosis es variable y dependiente intrínsecamente de dicha célula.
  2. Células de distintos tipos muestran diferente capacidad y eficacia en el proceso de reparación de las lesiones radioinducidas.
  3. Distintas células pueden tolerar niveles desiguales de daño residual.

Inducción: Daño inicial

El daño inicial es el que se produce en la molécula de ADN inmediatamente después de la irradiación y debe ser medido antes de que los sistemas de reparación celulares puedan actuar. Para poder cuantificar experimentalmente este daño, las células se irradian a 4 grados centígrados, temperatura a la que los mecanismos de reparación del ADN están inhibidos. El daño inicial se expresa como el número de lesiones producidas por unidad de dosis. Los modificadores del daño inicial son:
  • El efecto oxígeno.
  • La presencia de moléculas donadores de H.
  • Fase del ciclo celular.

Procesamiento: Reparación del ADN

La reparación del ADN es el mecanismo celular que restablece la secuencia del ADN a su estado original previo a la inducción de lesiones provocadas por la radiación. Las células humanas poseen una importante capacidad para reparar el daño producido en su ADN, que varían en velocidad, capacidad y fidelidad y por ello se explica las diferencias de radiosensibilidad en las distintas poblaciones celulares.
Existen diferentes mecanismos en células humanas para la reparación de las lesiones radioinducidas en el ADN como son:
  • Reparación de bases dañadas: Se realiza a través de la escisión de bases y escisión de nucleótidos.
  1. Escisión de bases: Una vez que se reconoce la base nitrogenada dañada, una glicosidasa específica, elimina la base dañada, una endonucleasa reconoce el hueco producido y con ayuda de una fosfodiesterasa corta el enlace fosfodiester. Posteriormente la ADN polimerasa añade el nucleótido que falta y la ADN ligasa sella la rotura de la hélice.
  1. Escisión de nucleótidos: Se pone en marcha cuando la lesión radioinducida origina dímeros de pirimidina (T-T, C-T y C-C). Cuando se reconoce el dímero, una glicosidasa corta la hebra de ADN dañada a ambos lados de la lesión, a continuacón una helicasa elimina un fragmento con aproximadamente 12 nucleótidos entre los que se encuentran los que están dañados. Posteriormente, estos nucleótidos son nuevamente sintetizados por una polimerasa que utiliza la hebra complementaria intacta de molde. Finalmente una ligasa sella la unión.
  • Reparación de roturas simples de cadena: Utiliza el mecanismo de escisión de bases. La reparación de roturas simples de cadena es un proceso rápido, ya que el 50% de las mismas se reparan en aproximadamente 15 minutos. Uno de los genes implicados en este tipo de reparación es el que codifica la enzima nuclear PARP-1 que reconoce las roturas simples de cadena.
  • Reparación de roturas dobles de cadena: En este caso no existe una cadena intacta de ADN para ser utilizada de molde en el proceso de reparación. Las cadenas con rotura doble son reagrupadas entre 4 y 6 horas por la gran complejidad del proceso que casi siempre conduce a errores o mutaciones que conducen a la muerte celular, aunque existen células que soportan el daño, como las tumorales. Existen dos mecanismos de reparación que son:
  1. Reparación por recombinación de cromosomas homólogos: Están implicados al menos 5 genes: Ku 70ku 80DNA-PCKcxligasa IVXrcc4. Además existen otras dos proteínas como la ATM y la ATR que se activan al unirse a los extremos rotos del ADN originados por roturas dobles de cadena y comienzan la reparación. Algunas de estas proteínas intervienen en la interrupción del ciclo celular para que la célula tenga tiempo de reparar la lesión o inducir la apoptosis. También está involucrada el gen BCRA1 y BCRA2.
  2. Reparación por unión de extremos no homólogos: Requiere un locus recíproco en la cromátida hermana o secuencias de ADN que posean gran homología con aquella que ha sido dañada. Se activa cuando la lesión originada conlleva pérdida de material genético. Es un mecanismo de reparación minoritario, dada la baja posibilidad de encontrar el locus recíproco dentro del genoma completo de la célula.
  • Enfermedades humanas por trastornos en la reparación de ADN:
  1. Xeroderma pigmentosum.
  2. Ataxia-telangiectasia.
  3. Anemia de Fanconi.
  4. Cáncer de mama hereditario por BRCA1/BRCA2.
  5. Síndrome de Nijmegen.
  • Alteraciones en los mecanismos de reparación de ADN como marcador:
  1. Marcador de riesgo de enfermedad neoplásica: La protein-quinasa dependiente de ADN (DNA-PK) es un marcador de cáncer de pulmón.
  2. Marcador de respuesta al tratamiento: La proteína ATM se activa inmediatamente tras exposición de las células a la radiación ionizante. Si se inhibe selectivamente en las células tumorales, las hace más sensibles a la radiación que las células normales. La inhibición de la PARP-1 también potencia la muerte celular por radiación.

Radiobiología y radioterapia

Aunque la radiación lesiona y puede destruir tanto a las células cancerosas como a las normales, estas últimas pueden repararse y recuperar su funcionamiento adecuado.
Los principales mecanismos radiobiológicos de respuesta de los tumores a la irradiación se describen habitualmente como «las 5 R de la Radioterapia» que son:
  • RADIOSENSIBILIDAD INTRÍNSECA: Es la sensibilidad innata o propia de las células a la irradiación.
  • REOXIGENACIÓN: Tras cada sesión de radiación existen células hipóxicas que al final del tratamiento estarán oxigenadas y serán radiosensibles.
  • REDISTRIBUCIÓN: Tras una fracción de radiación, se sitúan más células en fase G2 y M del ciclo celular, siendo más radiosensibles ante las siguientes fracciones.
  • REPARACIÓN DEL DAÑO SUBLETAL (RDSL): Es mayor en tejidos sanos, por lo que se protege al tejido normal con un régimen de fraccionamiento que permita esta reparación entre dos sesiones de radiación, que debe ser entre seis y ocho horas.
  • REPOBLACIÓN ACELERADA: Es el aumento del número de divisiones celulares como mecanismo de compensación, siendo más importante en los tejidos y tumores de duplicación rápida o con tiempo de duplicación pequeños.

La radiobiología es el estudio de la acción biológica de las radiaciones sobre la materia, lo que impulsa el conocimiento y desarrollo de una disciplina tan importante en nuestros dias como es la Radiología y la Medicina fïsica. Conocer los mecanismos biológicos de lo que ocurre cuando el individuo se expone a radiaciones tanto ionizantes como no ionizantes, junto con avances físicos, ha impulsado el perfeccionamiento y avance de especialidades del campo de la Radiología, como son la Radioterapia, la Medicina Nuclear, la Protección Radiológica y la Medicina Física.
Poco tiempo después del descubrimiento de Roentgen, los médicos observaron que los rayos X parecían destruir células tanto normales como neoplásicas. El propio Dr. Freund, tras haber observado que esta nueva radiación había provocado la caída del pelo de uno de sus colaboradores, trató con rayos X el nevus piloso de un niño. La observación de los efectos biológicos que se desprendieron de las primeras aplicaciones empíricas de las radiaciones ionizantes y el hecho de que su utilidad clínica originara un profuso empleo de las mismas fueron los resortes que pusieron en marcha el estudio razonado de estos efectos.
El propio Becquerel, en 1901, se causó una quemadura en el vientre por llevar radium en un tubo de ensayo en el bolsillo de su chaleco, y Pierre Curie se produjo deliberadamente una reacción similar en su antebrazo. Unos días después presentó una comunicación en la Academia de Ciencias Francesas que decía:
"La piel comenzó a enrojecer en una superficie de seis centímetros cuadrados; la apariencia es la de una quemadura, pero la piel no me dolía o me dolía muy poco. Al cabo de cierto tiempo, el enrojecimiento, aunque sin extenderse, se hizo más intenso. Al vigésimo día se formaron costras, luego una llaga que cubrimos con vendajes. El cuadragésimo segundo día, la epidermis comenzó a regenerarse por los bordes hasta llegar al centro. Cincuenta y dos días después de la acción de los rayos queda aún en estado de llaga una superficie de un centímetro cuadrado, que adquiere un aspecto grisáceo, indicando una mortificación más profunda" (Eric J. Hall. Radiobiology for the radiologist. J.B. Lippincott Company, 1988).
Fue Foveau de Courmelles, que también en 1901 se produjo una quemadura por radium, quien describió las propiedades biológicas de este tipo de radiaciones como "químicas, penetrantes y destructivas". El optimismo por la consecución de radiografías y curaciones fue seguido no obstante del pesimismo, a causa de la frecuente aparición de quemaduras. Los sistemas rudimentarios de medida de dosis, basados en el cambio de color de pastillas de bario (técnica de Sabouraud y Noiré en 1904) o en métodos biológicos como la dosis eritema resultaron insuficientes. A partir de aquí las investigaciones no cesan. Estábamos en los albores de la Radiobiología.
Estudio de las Curvas de Supervivencia
Uno de los estudios clásicos sobre la biología de la radiación fue la construcción de las curvas de supervivencia. Las primeras curvas in vitro fueron realizadas por Puck y Marcus en 1956, los cuales determinaron la supervivencia de células procedentes de un cáncer de cérvix (He-La) tras exponerlas a diferentes dosis de radiación. Esta contribución generó gran expectación en el campo de la Radiobiología. Pero este entusiasmo no fue compartido por todo el mundo, pues algunos investigadores de la época mostraban escepticismo ante una técnica en la cual las células se cultivaban en unas condiciones artificiales, y lo más dificil, creer que esos experimentos pudieran traducirse en mejoras en la práctica radioterápica. Estos temores fueron elocuentemente anunciados por Spear, en 1957, en una conferencia impartida en el MacKenzie Davidson Memorial para el Instituto Británico de Radiología donde entre otras cosa dijo:
"... La respuesta de estas células in vitro a varios estímulos, incluidas las radiaciones, puede parecerse a la respuesta del tumor in vivo, como el comportamiento de Robinson Crusoe en su isla desierta comparado con el que tendría en la vida social de York en la mitad del siglo XVII ..."
Esta conferencia tuvo su contrarréplica por el Dr. David Gould, profesor de Radiología de la Universidad de Colorado; y el tiempo le dio la razón, pues cuando se realizaron los primeros ensayos in vivo los parámetros de relación dosis-respuesta resultaron ser muy similares a los realizados in vitro (Eric J. Hall. Radiobiology for the radiologist. J.B. Lippincott Company, 1988).
Fueron Whiters, McCulloch y Till quienes idearon técnicas para construir curvas de supervivencia celular utilizando diversos tejidos.
Whithers y sus colaboradores desarrollaron técnicas para el estudio del comportamiento de tejidos de piel, testículo, riñón e intestino. Till y McCulloch realizaron ensayos con cultivos de médula ósea y las primeras curvas dosis-respuesta con células de mama y tiroides fueron obtenidas por Clifton y Gould.
La técnica de diluciones fue desarrollada por Hewitt y Wilson, quienes la utilizaron para realizar la primera curva de supervivencia in vivo en 1959, utilizando células de leucemia linfocítica provenientes de un ratón enfermo.
Estudio de la Radiosensibilidad
En 1906 dos franceses, J. Bergonié y L. Tribondeau, realizaron amplios experimentos con testículos de roedores y establecieron, en función de la actividad mitótica y la diferenciación celular, las leyes de radiosensibilidad. En 1925, Ancel y Vitemberg modificaron la ley anterior.
Los primeros intentos de estudiar la sincronización del ciclo celular para establecer la respuesta a la radiación fueron realizados por Terasima y Tolmach que describieron la técnica de "cosecha mitótica". Estudios posteriores para ver la sincronización celular tanto en cultivos como en tejidos fueron realizados mediante la incorporación de una droga. La más ampliamente usada ha sido la hidroxiurea.
Efecto Oxígeno
Las primeras observaciones sobre el llamado "Efecto Oxígeno" fueron realizadas en 1912 por Swartz en Alemania, quien observó que la reacción que se producía en su antebrazo tras ponerlo en contacto con un aplicador de radium se reducía si presionaba con fuerza el aplicador contra su antebrazo. Él atribuyó esta disminución de la reacción a la interrupción de flujo sanguíneo. En 1921 Holthunsen observó que los huevos de Ascaris eran relativamente resistentes a la radiación en ausencia de oxígeno, una observación erróneamente atribuída a la ausencia de divisiones celulares bajo esas condiciones. La correlación entre radiosensibilidad y presencia de oxígeno en el medio fue hecha por Petri en 1923 tras el estudio de los efectos de la radiación sobre semillas vegetales. En Inglaterra, en los años 30, Mottram estudió el efecto oxígeno con detalle, basando sus investigaciones en un trabajo de Crabtree y Cramer acerca de cortes tumorales irradiados en presencia y ausencia de oxígeno. Las investigaciones de Mottram culminaron con las investigaciones de sus colegas Gray y Read que crearon una medida cuantitativa del efecto oxígeno usando como test biológico la inhibición del crecimiento la raiz de la judia Vicia faba.
Fueron Thomlinson y Gray en 1955 quienes, al poner de manifiesto la presencia de células hipóxicas en muestras de carcinoma bronquial y la capacidad de difusión del oxígeno a través del espesor del tumor, desencadenaron un tremendo interés en los radioterapeutas, siendo estas observaciones acerca del poder del oxígeno en la muerte celular por radiaciones las que dominaron el movimiento investigador de los radiobiólogos y radioterapeutas de finales de los años 50 y principios de los 60.
Radiosensibilizadores
Tras haber descubierto la importancia como radiosensibilizador del oxígeno, las investigaciones se centran en buscar la manera de aumentar la oxigenación de los tejidos. Adams y colaboradores, a principios de los 60, comenzaron una serie de investigaciones en busca de sustancias o componentes que fueran análogos en cuanto a su función radiosensibilizante al oxígeno. Las investigaciones condujeron a la búsqueda de drogas o sustancias que en su estructura química tuvieran asociada afinidad electrónica. Esto condujo al descubrimiento en 1973 del metronidazol, que venía usándose como medicamento contra la tricomoniasis. Urtason y colaboradores publicaron en 1976 un ensayo con metronidazol y radioterapia en el glioblastoma multiforme, obteniendo supervivencias medias algo superiores a las del grupo control, aunque a medio plazo los resultados fueron equiparables a los de otros autores que no administraban este radiosensibilizante.
El misonidazol fue ensayado posteriormente por tener mayor afinidad electrónica que el metronidazol. A principios de los 80 se desarrollaron compuestos análogos al misonidazol pero menos neurotóxicos. Ensayos posteriores, tanto de un grupo multicéntrico europeo como de otro americano (RTOG), sintetizan tres compuestos prometedores: SR- 2508, Ro-03-8799, RSU-1069. En los últimos años, otra vía de investigación es el estudio de la presencia de células hipóxicas en distintas localizaciones a partir del misonidazol marcado con tritio (H3).
Se conocen otros compuestos además de los sensibilizadores de células hipóxicas que actúan sobre las células bien oxigenadas y despiertan gran interés. Entre los más representativos están las pirimidinas halogenadas. Los primeros ensayos clínicos se iniciaron en los años 60-70, dirigidos por Bagshaw quien inyectó la BrUdR a pacientes afectos de cáncer de cabeza y cuello. Debido a las lesiones producidas en los tejidos sanos, se interrumpieron los ensayos clínicos y actualmente sólo se administra en pacientes muy concretos.
Hipertermia
Se pensó ya en utilizar el calor en los tumores malignos en 1866, cuando un médico alemán, Bush, publicó la regresión de un sarcoma facial al sufrir el paciente un proceso febril. Este caso y otros similares llevaron a pensar al cirujano americano W.B. Coley que la bacteria causante de la erisipela podría ser un arma eficaz contra el cáncer. Los trabajos de Coley condujeron a otros investigadores a seguir utilizando la hipertermia en tumores y animales experimentales. En 1898 Westermark, un ginecólogo sueco, publicó la regresión de un determinado número de cánceres de cérvix tras haberlos sometido a hipertermia local. Desde entonces se han intentado diversos ensayos clínicos en los que se utiliza la hipertermia, utilizada como radiosensibilizante, asociada a la Radioterapia. A pesar de las series publicadas por Overgaard (1981), Arcangeli (1983), Scott (1984), el papel de la hipertermia en el tratamiento del cáncer se encuentra actualmente a la espera de la publicación de nuevos ensayos clínicos controlados.
Radioprotectores
En 1948 Patt descubrió que la cisteína podía proteger al ratón de los efectos de una irradiación total, siempre y cuando la droga se hubiera inyectado o ingerido en grandes cantidades antes de la exposición a la radiación. Aproximadamente al mismo tiempo, en Europa y de forma independiente, Bacq y sus colaboradores descubrieron que la cisteamina podía tambien proteger animales de la irradiación total. Estos descubrimientos despertaron el interés de la Armada americana que tenía muy presente los desastres provocados en Hiroshima y Nagasaki. Como consecuencia, en el Walter Reed Army Hospital de Washington comenzaron una ardua investigación, llegando a sintetizar cerca de 2.000 sustancias con el único fin de encontrar el radioprotector perfecto. El WR2721 es quizás el compuesto más efectivo de los creados por el Walter Reed Hospital (Petschen Verdaguer. Discurso de la Real Academia de Medicina de Valencia. Noviembre, 1995).
Muchos de los estudios actuales se centran en la inhibición de sustancias en sí mismas radioptrotectoras, como el glutation, por lo que es posible que se anuncien en el futuro algunos avances en este campo.
Es la investigación de los efectos biológicos de las radiaciones no ionizantes donde se abre una nueva puerta en el campo de la Radiobiología. En los últimos años se ha producido un aumento sin precedentes, por su número y diversidad, de las fuentes de campos eléctricos y magnéticos (CEM) utilizadas con fines personales, industriales y comerciales. Las investigaciones relativas al efecto de este tipo de radiaciones y sus efectos sobre los sistemas biológicos no cesan desde hace 30 años y es en este terreno de investigación donde se abren nuevas e interesantes incógnitas que necesitan de la investigación conjunta de disciplinas propias del área de la Radiología, como son la Radiobiología, la Medicina Física, la Protección Radiológica y por supuesto, la Física.

Resultado de imagen de Radiobiología

Resultado de imagen de Radiobiología

Resultado de imagen de Radiobiología

Resultado de imagen de Radiobiología

No hay comentarios:

Publicar un comentario