sábado, 17 de noviembre de 2018

ARITMÉTICA

ARITMÉTICA ELEMENTAL - FRACCIONES

 desigualdad entre media aritmética y geométrica, o MA-MG, aquella desigualdad que establece que la media aritmética de un conjunto de números reales positivos es mayor o igual que la media geométrica del mismo conjunto, cumpliéndose únicamente la igualdad cuando todos los elementos del conjunto sean iguales.

Media aritmética y media geométrica[editar]

La media aritmética de un conjunto de números reales  es igual a la suma dividida por el número total de elementos,
La media geométrica de un conjunto de reales no negativos , es igual a la raíz enésima del producto de todos ellos:

La desigualdad[editar]

Sea  entonces
La igualdad se cumple si y sólo si .

Demostración por inducción[editar]

Para demostrar la desigualdad MA-MG, se desarrollara por una variante del método de inducción matemática, demostrando que la MA-MG es cierta para 2 elementos, luego generalizándolo para 2n elementos y demostrando que si es cierta para n es cierta para n-1 elementos (variante "adelante-atrás" según Augustin Louis Cauchy).
Sea  un conjunto de n elementos.
Procedemos a considerar el primer paso en que n=2:
Quedando así demostrado para n=2, luego se demuestra que si es cierta para n es cierta para 2n elementos.
Siguiendo la hipótesis,
Se sigue que,
Siendo esto igual a,
Quedando así demostrado que si es cierto para n elementos es cierto para 2n elementos.
Ahora procedemos a demostrar que si es cierta para n elementos es cierta para n-1 elementos,
Sea  y 
Se considera la desigualdad de todos los elementos mencionados,
Haciendo raíz n-1-ésima se sigue,
Quedando así demostrado por el método inductivo, la veracidad de la desigualdad MA-MG.
 Q.E.D.










Construcción geométrica para hallar las medias aritmética (A), cuadrática (Q), geométrica (G) y armónica (H) de dos números a y b.
En matemáticas y estadística, la media aritmética, también llamada promedio o media, de un conjunto finito de números es el valor característico de una serie de datos cuantitativos, objeto de estudio que parte del principio de la esperanza matemática o valor esperado, se obtiene a partir de la suma de todos sus valores dividida entre el número de sumandos. Cuando el conjunto es una muestra aleatoria recibe el nombre de media muestral siendo uno de los principales estadísticos muestrales.







Definición[editar]

Dados los n números , la media aritmética se define como:
Por ejemplo, la media aritmética de 8, 5 y -1 es igual a:
Se utiliza la letra X con una barra horizontal sobre el símbolo para representar la media de una muestra (), mientras que la letra µ (mu) se usa para la media aritmética de una población, es decir, el valor esperado de una variable.
En otras palabras, es la suma de n valores de la variable y luego dividido por n, donde n es el número de sumandos, o en el caso de estadística el número de datos se da el resultado.

Propiedades[editar]

  • La suma de las desviaciones con respecto a la media aritmética es cero (0).
  • La media aritmética de los cuadrados de las desviaciones de los valores de la variable con respecto a una constante cualquiera se hace mínima cuando dicha constante coincide con la media aritmética.
  • Si a todos los valores de la variable se le suma una misma cantidad, la media aritmética queda aumentada en dicha cantidad.
  • Si todos los valores de la variable se multiplican por una misma constante la media aritmética queda multiplicada por dicha constante.
  • La media aritmética de un conjunto de números positivos siempre es igual o superior a la media geométrica:
  • La media aritmética está comprendida entre el valor máximo y el valor mínimo del conjunto de datos:
  • La media es un valor comprendido entre los extremos de la distribución.
  • La media es el centro de gravedad de la distribución de la variable. La media muestral es donde el diagrama de puntos se equilibra (Wild & Seber, 1999, 63). Es decir, la suma de las desviaciones de los valores con respecto a ella es igual a cero.
  • La media del producto de una constante a por una variable X es igual al producto de la constante por la media de la variable dada. Es decir, si se efectúa un cambio de unidad de medida a los datos (por ejemplo de metros a centímetros), la media queda afectada por dicho cambio de escala.
  • La media de la suma de una constante entera a con una variable X es igual a la suma de la constante con la media de la variable dada. O sea, al efectuar un cambio en el origen desde el que se han medido los datos, la media queda afectada por dicho cambio de origen.
  • La media está influenciada por los valores de cada uno de los datos.
  • La media no tiene por qué ser igual a uno de los valores de los datos, ni siquiera de su misma naturaleza: datos enteros pueden tener una media decimal.
  • La media es un representante de los datos a partir de los que ha sido calculada, es decir, es un número que distingue un grupo de datos de otros (aunque es importante tener en cuenta medidas de dispersión para diferenciar grupos de datos con la misma media).
En otros términos hay por lo menos un dato que es mayor o igual que la media aritmética.
Por ejemplo, es fácil deducir que en una reunión de 38 individuos hay necesariamente al menos 4 que nacieron el mismo mes. El promedio de individuos que nacieron por mes es 38/12 ≈ 3,167. Luego en algún mes nacieron en una cantidad entera y mayor o igual que el promedio, o sea 4 ≥ 3,167.








Construcción geométrica para hallar las medias aritmética (A), cuadrática (Q), geométrica (G) y armónica (H) de dos números a y b.
La media armónica (designada usualmente mediante H) de una cantidad finita de números es igual al recíproco, o inverso, de la media aritmética de los recíprocos de dichos valores y es recomendada para promediar velocidades.
Así, dados n números x1, x2, ... , xn la media armónica será igual a:
La media armónica resulta poco influida por la existencia de determinados valores mucho más grandes que el conjunto de los otros, siendo en cambio sensible a valores mucho más pequeños que el conjunto.
La media armónica no está definida en el caso de que exista algún valor nulo.

Propiedades[editar]

  1. La inversa de la media armónica es la media aritmética de los inversos de los valores de la variable.
  2. Siempre se puede pasar de una media armónica a una media aritmética transformando adecuadamente los datos.
  3. La media armónica siempre es menor o igual que la media aritmética, ya que para cualquier número real positivo :

Ventaja[editar]

  • Considera todos los valores de la distribución y en ciertos casos, es más representativa que la media aritmética.

Desventajas[editar]

  • La influencia de los valores pequeños y el hecho de que no pueda ser determinada en distribuciones con valores iguales a cero; por eso su empleo no es aconsejable en distribuciones donde existan valores muy pequeños.
Suele ser empleada para promediar velocidades, tiempos, rendimientos, etc.

Curiosidades[editar]

La media armónica surge de manera natural al calcular el índice de Paasche, uno de los números índice más comunes. Considérese una serie temporal  que resulta de agregar el valor nominal de la producción o el gasto  en  mercancías. Para aislar cambios en cantidades de cambios en precios el índice de Laspeyres fija los precios del periodo anterior y compara el gasto hoy con los precios de ayer al gasto de ayer
Al dejar los precios fijos, se interpreta que  sólo refleja cambios en cantidades o reales. También se puede observar que se trata de una media donde el cambio en la cantidad de la mercancía  aparece ponderada por el peso del gasto en esta mercancía sobre el gasto total.
El índice de Paasche, al revés, procede a dejar fijos los precios de hoy: compara el gasto hoy con el gasto de ayer si hubieran prevalecido los precios de hoy.
De esta definición no podemos obtener una media ponderada como antes. Sin embargo, si se considera la fórmula invertida ocurre que
pero entonces
Esto es, el índice de Paasche resulta ser la media armónica de los cambios en cantidades en cada una de las mercancías.

No hay comentarios:

Publicar un comentario