En geometría algebraica, una superficie cuártica de Kummer, estudiada por Kummerprimero (1864), es una superficie nodal irreductible de grado tres en el espacio projectivo (P3) con el máximo número posible de nódulos. Cualquier superficie así es la variedad de Kummer de la variedad Jacobiana de una curva hiperelíptica de genus 2, esto es, el cociente de una Jacobiana por una involución de Kummer x ↦ −x. La involución de Kummer tiene 16 puntos fijos: 16 puntos con 2-torsiones del jacobiano, y son los 16 puntos singulares de la superficie cuártica. Al resolver los 16 puntos dobles del cociente de un toro (posiblemente no algebraico) mediante la involución de Kummer se obtiene una superficie K3 con 16 curvas racionales disjuntas; estas superficies K3 también se denominan a veces superficies Kummer.
Otras superficies estrechamente relacionadas con las superficies de Kummer incluyen superficies Weddle, superficies onduladas y tetraedroides.
La superficie de Kummer es un caso especial de las superficies K3 de André Weil (este nombre se les dio por el pico del Himalaya descubierto al tiempo del trabajo de Weil. Otra explicación es que K3 viene del trío de matemáticos Kummer, Kodaira y Kähler). Las superficies K3 son las variedades de Calabi-Yau de dimensión dos, y han jugado un papel importante en la teoría de cuerdas.
haz F sobre un espacio topológico dado, X, proporciona, para cada conjunto abierto U de X, un conjunto F(U), de estructura más rica. A su vez dichas estructuras, F(U), son compatibles con la operación de restricción desde un conjunto abierto hacia subconjuntos más pequeños y con la operación de pegado de conjuntos abiertos para obtener un abierto mayor. Un prehaz es similar a un haz, pero con él puede no ser posible la operación de pegado. Los haces nos permiten discutir de manera refinada sobre lo que significa ser una propiedad local, tal y como hablamos de ello cuando lo aplicamos a una función.
Los haces son usados en topología, geometría algebraica y geometría diferencial siempre que queremos guardar rastro de los datos algebraicos que varían con cada conjunto abierto del objeto geométrico dado. Son una herramienta global para estudiar objetos que varían localmente (i.e., dependiendo del conjunto abierto). Funcionan como instrumentos naturales para el estudio del comportamiento global de entidades que son de naturaleza local, como los conjuntos abiertos, o las funciones: continuas, analíticas, diferenciables...
Por considerar un ejemplo típico, sea un espacio topológico X y sea, para cada conjunto abierto U en X, el conjunto F(U), que consta de todas las funciones continuas U R. Si V es un subconjunto abierto de U, entonces las funciones sobre U pueden restringirse a V, y tenemos una aplicación F(U) F(V). El "pegado" se trata del siguiente proceso: supón que los Ui son conjuntos abiertos cuya unión es U, y para cada i cogemos un elemento fi F(Ui), i.e. una función continua fi : Ui R. Si estas funciones coinciden allá donde se solapen, entonces podemos pegarlas juntas de manera que nos den una única forma de conseguir una función continua f : U R conincidente con todas las fi. La colección de conjuntos F(U) junto con las aplicaciones restricción F(U) F(V) forman un haz de conjuntos sobre X. Realmente, los F(U) son anillos conmutativos y las aplicaciones de restricción son homomorfismos de anillos, y F es además un haz de anillos sobre X.
Un ejemplo muy parecido se obtiene considerando una variedad diferenciable X, y para cada conjunto abierto Ude X, tomando el conjunto F(U) como el de las funciones diferenciables U R. En este ejemplo va a funcionar también el pegado y tendremos un haz de anillos sobre X. Otro haz sobre X asigna a cada conjunto abierto U de X el espacio vectorial de todas los campos vectoriales diferenciables definidos sobre U. La restricción y el pegado funcionará como en el caso de las funciones, y obtendremos un haz de espacios vectoriales sobre la variedad X.
Algo sobre la historia de la teoría de haces en fechas[editar]
Los orígenes más primigenios de la teoría de haces son difíciles de discernir - seguramente son coextensivos con la idea de la continuación analítica. Tomó alrededor de 15 años para extraer una teoría de haces autosuficiente del trabajo fundacional en cohomología.
- 1936 Eduard Čech introduce la construcción de Nervio de un recubrimiento abierto, que asocia un complejo simplicial a un recubrimiento abierto.
- 1938 Hassler Whitney suministra una definición 'moderna' de la cohomología, resumiendo todo el trabajo realizado desde que Alexander y Kolmogórov definieran las cocadenas.
- 1943 Steenrod publica sobre la homología con coeficientes locales.
- 1945 Jean Leray publica trabajo realizado en un campo de prisioneros de guerra, motivado por las demostraciones sobre teoremas del punto fijo en su aplicación a la teoría de EDP (ecuaciones en derivadas parciales). Esto es el comienzo de la teoría de haces y de las secuencias espectrales.
- 1947 Henri Cartan demuestra de nuevo el Teorema de de Rham mediante métodos de teoría de haces, en su correspondencia con André Weil. Leray da una definición de haz a través de los conjuntos cerrados (los antiguos carapaces).
- 1948 El seminario de Cartan pone por primera vez la teoría de haces por escrito.
- 1950 La 'segunda edición' del seminario de Cartan sobre teoría de haces: donde se usa la definición del espacio de haces (éspace étalé), con estructura de tallos (stalkwise).
Son introducidos los Soportes, y la cohomología con soportes. Las aplicaciones continuas hacen surgir las sucesiones espectrales. Al mismo tiempo Kiyoshi Oka introduce la idea (parecida a aquella) de un haz de ideales, en varias variables complejas.
- 1951 El seminario de Cartan demuestra los teoremas A y B basados en la obra de Oka.
- 1953 El teorema de finitud para haces coherentes en la teoría analítica es demostrado por Cartan y Serre, así como La dualidad de Serre.
- 1954 El artículo de Serre Faisceaux algébriques cohérents (publicado en 1955) introduce los haces dentro de la geometría algebraica. Estas ideas son explotadas inmediatamente por Hirzebruch, quien escribe un libro fundamental sobre métodos topológicos.
- 1955 Alexander Grothendieck en lecturas dadas en Kansas define la categoría abeliana y los prehaces, y mediante el uso de la resolución inyectiva permite usar directamente la cohomología de haces sobre todos los espacios topológicos, como funtores derivados.
- 1957 El artículo de Grothendieck llamado Tohoku reescribe el álgebra homológica; prueba la dualidad de Grothendieck (i.e., dualidad de Serre para variedades singulares).
- 1958 El libro de Godement sobre teoría de haces es publicado. Aproximadamente al mismo tiempo Mikio Satō propone las hiperfunciones, que terminan por verse "haz-teoréticamente".
- 1957 progresivamente: Grothendieck extiende la teoría de haces ajustándola a las necesidades de la geometría algebraica, introduciendo los: esquemass y haces generales sobre ellos, cohomología local, la categoría derivada (esto con Verdier), y la Topología de Grothendieck. Allí surgen también su influyente y sintética idea de las 'seis operaciones' en álgebra homológica.
En este punto los haces se han convertido ya en una parte fundamental en el desarrollo de la matemática, y su uso no se restringe de ningún modo a la topología algebraica. Más tarde se descubrió que la lógica en las categorías de haces es intuicionista (se suele a menudo nombrar esta observación como semántica Kripke-Joyal, pero probablemente debiera ser atribuida a un mayor número de autores). Esto demuestra cómo algunas de las facetas de la teoría de haces puede ser remontada tan lejos como a Leibniz.
La definición formal[editar]
Definiremos los haces en dos pasos. El primero es introducir el concepto de prehaz, que captura la idea de asociar información local a un espacio topológico. El segundo paso es introducir un axioma adicional, llamado el axioma de pegado o el axioma de haz, que captura la idea de pegar información local para obtener información global.
Definición de prehaz[editar]
Sea X un espacio topológico, y C una categoría (a menudo la categoría de conjuntos, de grupos abelianos, de anillos conmutativos, o la de módulos sobre un anillo fijo). Un prehaz F de objetos en C sobre el espacio X (un C-prehaz sobre X) viene dado por los datos siguientes:
- para cada conjunto abierto U en X, un objeto F(U) en C
- para cada inclusión de conjuntos abiertos V U, un morfismo F(U) F(V) en la categoría C, que se llama la "restricción
de U a V". La escribiremos como resU,V. Se requieren dos propiedades:
- para cada conjunto abierto U en X, tenemos resU,U =idF(U), i.e., la restricción de U a U es la identidad.
- dados cualquiera tres conjuntos abiertos W V U, tenemos resV,W o resU,V =resU,W, i.e. la restricción de F(U) a F(V) y entonces a F(W) es lo mismo que la restricción de F(U) directamente a F(W).
Esta definición puede darse fácilmente en términos de la teoría de las categorías. Primero definimos la categoría de los conjuntos abiertos sobre X como la categoría TopX cuyos objetos son los conjuntos abiertos de X y cuyos morfismos son las inclusiones. TopX es entonces la categoría correspondiente al orden parcial sobre los conjuntos abiertos de X. Un C-prehaz sobre X es entonces un funtor contravariante desde TopX a C.
Si F es un prehaz C-valuado sobre X, y U es un conjunto abierto de X, entonces F(U) se dice las secciones de Fsobre U. (Esto es por analogía con las secciones de los "fiber bundles"; ver abajo) Si C es una categoría concreta, entonces cada elemento de F(U) es llamado una sección. F(U) a menudo es también denotado Γ(U,F).
El axioma de pegado[editar]
Los haces son prehaces sobre los cuales las secciones sobre conjuntos abiertos pueden ser pegadas para dar secciones sobre abiertos más grandes. Estableceremos primero el axioma de una manera que requiere que Csea una categoría concreta.
Sea U la unión de la colección de conjuntos abiertos {Ui}. Para cada Ui, escoge una sección fi sobre Ui. Diremos que los fi son compatibles si para todo i j,
- resUi,UiUj(fi) =resUj,UiUj(fj).
Intuitivamente hablando, si las fi representan funciones, estamos diciendo que cualquiera de ellas coincidirá con otra allá donde se solapen. El axioma de haz dice que podemos obtener con los fi una sección única f sobre Ucuya restricción a cada Ui es fi, i.e., resU,Ui(f)=fi. Algunas veces esto se dice con dos axiomas, uno garantizando la existencia y el otro la unicidad.
Parafraseando esta definición de manera que funcione en cualquier categoría, notamos que podemos escribir los objetos y los morfismos envueltos en ella en un diagrama parecido a este:
La primera aplicación aquí es el producto de las aplicaciones restricción resU,Ui,:F(U)F(Ui) y cada par de flechas representa las dos restricciones resUi,UiUj:UiUiUj y resUj,UiUj:UjUiUj. Vale la pena hacer notar que esas aplicaciones agotan todas las posibilidades en cuanto a las aplicaciones restricción entre U, los Ui, y los UiUj.
La condición de que F sea un haz es exactamente la de que F(U) es el límite del resto del diagrama. Esto sugiere que debemos parafrasear la noción de recubrimiento en un contexto categorial. Cuando hacemos esto, obtenemos un diagrama que semeja al de arriba:
(Es importante notar aquí que para formar los productos en el diagrama, debemos embeber la categoría TopX en una categoría completa) La condición de que U es la unión de los Ui es la de que U es un colímite del resto del diagrama.
El axioma de pegado es ahora el que F torna todos los colímites en límites.
Ejemplos[editar]
Aparte de los que ya hemos puesto, los haces de secciones son ejemplos importantes. Supón que E y X son espacios topológicos y π : E X una aplicación continua. Para cada conjunto abierto U en X, sea F(U) el conjunto de todas las aplicaciones f : U E tales que π(f(x)) = x para todo x en U. Tal función f es llamada sección de π. No es difícil comprobar que F es un haz de conjuntos sobre X. De hecho, cada haz de conjuntos sobre X es esencialmente de este tipo, para aplicaciones muy especiales π; ver abajo.
Dado un haz F sobre X, los elementos de F(X) son llamados también las secciones globales, terminología motivada por el ejemplo previo.
Otros ejemplos:
- El haz constante.
- Cualquier fibrado vectorial proporciona un haz de conjuntos, cogiendo las secciones.
- Mira cómo los haces son usados en el artículo sobre Superficie de Riemann.
- Espacios anillados son haces de anillos conmutativos; son especialmente importantes los espacios localmente anillados, donde todos los tallos (mirar más abajo) son anillos locales.
- Los esquemas son espacios localmente anillados especiales, importantes en geometría algebraica; los haces de módulos son importantes en la teoría asociada.
- Haces de rectas en el artículo : Simulación.
teoría de Hodge es una herramienta útil en el estudio de las formas diferenciales en una variedad diferenciable M. Con mayor precisión, se utiliza para el estudio del grupo de cohomología de M, con coeficientes reales, mediante el uso del operador laplaciano asociado a una métrica de Riemann definida en M.
La teoría fue desarrollada por W. V. D. Hodge en los años 1930 como una extensión de la cohomología de De Rham, aplicándose principalmente para:
- el estudio de una variedad de Riemann
- el estudio de una variedad de Kähler
- en geometría algebraica, el estudio de una variedad proyectiva compleja o incluso, de forma más general, en un motivo.
En el desarrollo original, M se suponía una variedad cerrada (es decir, compacta y sin frontera). En los tres puntos de aplicación mencionados, la teoría fue de gran influencia en trabajos posteriores, siendo continuada, entre otros, por Kunihiko Kodaira (en Japón y después en Princeton, bajo la influencia parcial de Hermann Weyl).
Aplicaciones y ejemplos[editar]
Cohomología de De Rham[editar]
La formulación original de W. V. D. Hodge, se aplica al Complejo de De Rham. Si M es una variedad compacta y orientable dotada de una métrica diferenciable g, y Ωk(M) es el espacio de las formas diferenciables de grado ken M, entonces el complejo de De Rham es la secuencia de operadores diferenciales
donde dk indica la derivada exterior sobre Ωk(M). La cohomología de De Rham es entonces la secuencia de espacios vectoriales definida por
Se puede definir entonces el adjunto formal de la derivada exterior d, que se denota por δ, de la siguiente manera. Para todo α ∈ Ωk(M) y β ∈ Ωk+1(M), se debe cumplir que
donde es la métrica inducida sobre Ωk(M). El operador Laplaciano para formas se define entonces mediante Δ = dδ + δd. Esto permite definir el concepto de forma armónica y sus espacios asociados.
Puesto que , hay una aplicación canónica . La primera parte del conocido como Teorema de Hodge afirma que dicha aplicación φ es un isomorfismo de espacios vectoriales. Dicho de otro modo, para cada clase de cohomología de De Rham en M existe una única forma armónica que la representa.
Una consecuencia importante es que los grupos de cohomología de De Rham en variedades compactas deben ser de dimensión finita. Esto es debido a que el operardor definido como Δ es, en particular, elíptico, y el núcleo de un operador elíptico en una variedad compacta siempre es de dimensión finita.
Teoría de Hodge en complejos elípticos[editar]
De forma más general, la teoría de Hodge se aplica a cualquier complejo elíptico sobre una variedad compacta.
Sea un fibrado vectorial, con su correspondiente métrica, en una variedad compacta M y seadV su forma de volumen. Supongamos que
son operadores diferenciables que actúan en secciones de esos fibrados vectoriales, y que la secuencia inducida
es un complejo elíptico . Se introduce la suma directa:
y sea L* el adjunto de L. Se puede definir el operador elíptico Δ = LL* + L*L. Al igual que en el caso de De Rham, puede entonces definirse el espacio vectorial de las secciones armónicas.
Así pues, sea la proyección ortogonal, y sea G la operador de Green para Δ. En ese caso, el Teorema de Hodge asegura que:
- H and G están bien definidos.
- Id = H + ΔG = H + GΔ
- LG = GL, L*G = GL*
- La cohomología del complejo es isomorfa, de manera canónica, al espacio de secciones armónicas, , en el sentido de que cada clase de cohomología tiene un único representante armónico.
Estructuras de Hodge[editar]
Se puede dar una definición abstracta de una estructura de Hodge (en el campo real) de la siguiente forma: para un espacio vectorial real W, una estructura de Hodge con peso k (entero) en W es una descomposición como suma directa de WC = W ⊗ C, la complexificación de W, en piezas con grado Wp, q donde k = p + q, y de forma que la conjugación compleja de WC intercambia este subespacio con Wq, p.
En geometría algebraica, se tiene entonces el siguiente enunciado básico: los grupos de cohomología singularcon coeficientes reales de una variedad proyectiva compleja no singular V están dotados de una estructura de Hodge, de forma que possee la descomposición requerida en subespacios complejos Hp, q. Esto tiene una conocida consecuencia para los números de Betti, ya que tomando dimensiones
donde la suma está hecha sobre las parejas p, q con p + q = k y donde
La sucesión de números de Betti se convierte entonces en un diamante de Hodge de números de Hodge que se extiende en dos dimensiones.
Esta graduación proviene de la teoría de las formas armónicas, las cuales son representantes privilegiados de la clase de cohomología de De Rham anulados por el laplaciano de Hodge (generalizando las propiedades de una función armónica, la cual, como consecuencia del principio del máximo, en una variedad compacta debe ser localmente constante ). En trabajos posteriores de Dobealt ha sido mostrado que la descomposición de Hodge también aparece para grupos de cohomología de haces donde Ωp es el haz de p-formas holomorfas. Esto permite, en este caso, tener una interpretación más algebraica, que no recurre a ningún laplaciano.
No hay comentarios:
Publicar un comentario