ESTRUCTURA DE LOS ÁCIDOS NUCLÉICOS :
PROPORCIONES DE LAS BASES NITROGENADAS: REGLAS DE CHARGAFF
Al principio se pensaba que los ácidos nucleicos eran la repetición monótona de un tetranucleótido, de forma que no tenían variabilidad suficiente para ser la molécula biológica que almacenara la información. Sin embargo, Chargaff (1950) demostró que las proporciones de las bases nitrogenadas eran diferentes en los distintos organismos, aunque seguían algunas reglas. Estas reglas de Chargaff se cumplen en los organismos cuyo material hereditario es ADN de doble hélice y son las siguientes:
REGLAS DE CHARGAFF PARA ADN DE DOBLE HÉLICE | |
Edwin Chargaff
|
|
En la siguiente tabla se observan las proporciones de las bases nitrogenadas en algunos organismos.
Procedencia del ADN | A | G | C | T | 5-Me-C |
Timo de Bovino | 28,2 | 21,5 | 21,2 | 27,8 | 1,3 |
Esperma de bovino | 28,7 | 22,2 | 20,7 | 27,3 | 1,3 |
Germen de trigo | 27,3 | 22,7 | 16,8 | 27,1 | 6,0 |
Saccharomyces | 31,3 | 18,7 | 17,1 | 32,9 | - |
Escherichia coli | 26,0 | 24,9 | 25,2 | 23,9 | - |
Mycobacterium tuberculosis | 15,1 | 34,9 | 35,4 | 14,6 | - |
ØX174 | 24,3 | 24,5 | 18,2 | 32,3 | - |
T3 | 23,7 | 26,2 | 27,7 | 23,5 | - |
T5 | 30,3 | 19,5 | 19,5 | 30,8 | - |
T7 | 32,4 | 18,3 | 32,4 | 17,0 HMC | |
Virus ARN | A | G | C | U | |
Mosaico del tabaco (TMV) | 29,8 | 25,4 | 18,5 | 26,3 | |
Mosaico amarillo nabo | 22,6 | 17,2 | 38,0 | 22,2 | |
Poliomielitis | 28,6 | 24,0 | 22,0 | 25,4 | |
Encéfalo miocarditis del ratón | 27,3 | 23,5 | 23,2 | 25,9 | |
Reovirus Tipo 3 | 28,0 | 22,3 | 22,0 | 27,9 | |
Tumor de las heridas | 31,1 | 18,6 | 19,1 | 31,3 |
De la observación de la tabla anterior pueden extraerse las siguientes conclusiones:
- Todos los ADN estudiados cumplen la relación A=T y G=C, excepto el ADN del bacteriofago ØX174. El ADN de este virus es de una sola hélice.
- En los virus ARN no se cumple la equimolaridad de las bases excepto en el caso del virus del Tumor de las heridas y de los Reovirus que tienen ARN de doble hélice. En estos virus se cumple que A=U y G=C, además se cumple que A+G/U+C=1.
- El fago T2 y los otros fagos T-pares (T4 y T6) en vez de citosina tienen hidroximetil-citosina (HMC).
- Algunos organismos tiene en su ADN una pequeña proporción de 5-metil-citosina (5-Me-C) que sustituye a la citosina.
Igualmente, en la siguiente tabla puede observarse como la proporción A+T/G+C varia de un organismo a otro.
Organismo | Tejido |
A+T/G+C
|
Escherichia coli | - | 1,00 |
Diplococcus pneumoniae | - | 1,59 |
Mycobacterium tuberculosis | - | 0,42 |
Levadura | - | 1,79 |
Paracentrolus lividus (erizo mar) | Esperma | 1,85 |
Arenque | Esperma | 1,23 |
Rata | Médula ósea | 1,33 |
Hombre | Timo | 1,52 |
Hombre | Hígado | 1,53 |
Hombre | Esperma | 1,52 |
Por tanto, la proporción A+T/G+C es específica de cada organismo y como veremos más adelante cuando hablemos de las propiedades físico- químicas de los ácidos nucleicos, dicha proporción está relacionada con la densidad y la temperatura de fusión.
Ácidos nucleicos
De acuerdo a la composición química, los ácidos nucleicos se clasifican en ácidos desoxiribonucleicos (ADN) que se encuentran residiendo en el núcleo celular y algunos organelos, y en ácidos ribonucleicos (ARN) que actúan en el citoplasma. Se conoce con considerable detalle la estructura y función de los dos tipos de ácidos.
Estructura. El conocimiento de la estructura de los ácidos nucleicos permitió la elucidación del código genético, la determinación del mecanismo y control de la síntesis de las proteínas y el mecanismo de transmisión de la información genética de la célula madre a las células hijas.
A las unidades químicas que se unen para formar los ácidos nucleicos se les denomina nucleótidos y al polímero se le denomina polinucleótido o ácido nucleico.
Los nucleótidos están formados por una base nitrogenada, un grupo fosfato y un azúcar; ribosa en caso de ARN y desoxiribosa en el caso de ADN.
Las bases nitrogenadas son las que contienen la información genética y los azúcares y los fosfatos tienen una función estructural formando el esqueleto del polinucleótido.
En el caso del ADN las bases son dos purinas y dos pirimidinas. Las purinas son A (Adenina) y G (Guanina). Las pirimidinas son T (Timina) y C (Citosina) . En el caso del ARN también son cuatro bases, dos purinas y dos pirimidinas. Las purinas son A y G y las pirimidinas son C y U (Uracilo).
Figura 1.1.1.D.-Estructura de las Bases Nitrogenadas.
Las bases se unen al carbono 1' del azúcar y el fosfato en el carbón 5' para formar el nucleótido.
Figura 1.1.1.E.-Estructura de un Nucleótido.
Los nucleótidos se unen para formar el polinucleótido por uniones fosfodiester entre el carbono 5' de un nucleótido y el carbono 3' del siguiente.
Figura 1.1.1.F.-Unión Fosfodiester en los Ácidos Nucleicos.
Un dinucleótido en el que se unieron un nucleótido con la base A con un nucleótido con la base G y el enlace fosfodiester se formó entre el carbono 3'del nucleótido con base A y el 5'del nucleótido con base G, se representa simplemente como AG. Si a este dinucleótido se le agrega otro nucleótido en el carbono 3' y este nucleótido tiene una base T, el trinucleótido resultante se representará por AGT. Ésta es la forma simplificada en que se acostumbra representar los polinucleótidos.
El ADN está formado por dos cadenas muy largas de polinucleótidos unidas entre sí por puentes de hidrógeno específicos entre las bases de las dos cadenas. La base de una cadena que se une por los puentes de hidrógeno con la base de la otra cadena se dice que forman un par de bases. A se parea con T y G con C (Figura 1.1.1.G.).
Las dos cadenas se encuentran arregladas en una estructura helicoidal alrededor de un eje común por lo que recibe el nombre de doble hélice. Las bases se encuentran acomodadas hacia el eje de la doble hélice, mientras que el azúcar y los fosfatos se encuentran orientados hacia el exterior de la molécula.
Figura 1.1.1.G.-Estructura de los Pares de Bases.
El dimensiones de la hélice, independientemente de la especie, son las siguientes: diámetro 20 Angstrom y la longitud del paso 34 Angstrom el cual está constituido por 10 residuos de nucleótidos. El tamaño de la molécula de ADN de doble hélice se expresa en miles de bases o kb. La longitud de 1kb es entonces 0.34 micras.
Una molécula de ADN de un milímetro de longitud estará formado de 3 mil kb o sea tres millones de bases.
Así pues la molécula de ADN es un largo filamento de 20 Angstrom de diámetro cuya longitud depende del número de kb, el cual a su vez depende de la especie. El rango de tamaño va desde 2 micras (5 kb) en el virus SV40, hasta casi un metro (3 x 106 kb) en cromosomas humanos. El genoma de E. coli, no tiene extremos, o sea forma un círculo, y el perímetro tiene una longitud de 1.4 mm (4000kb). El genoma de los animales superiores no forma círculos, es una estructura lineal abierta.
Figura 1.1.1.H.- Estructura de la Doble Hélice
En los cromosomas estas moléculas se arreglan en estructuras más compactas en las que la doble hélice se enrolla sobre sí misma. En el caso de las bacterias, la molécula de ADN de más de un milímetro de longitud se arregla dentro de la bacteria que sólo tiene una longitud de una micra (o sea es una longitud mil veces menor).
El ARN es un filamento de una sola cadena, no forma doble hélice. La presencia de un oxígeno en la posición 2' de la ribosa impide que se forme la doble cadena de la manera en que se forma en el ADN. El filamento de ARN se puede enrollar sobre sí mismo mediante la formación de pares de bases en algunas secciones de la molécula.
Existen varios tipos de ARN cada uno con función distinta. Los que forman parte de las subunidades de los ribosomas se les denomina ARN ribosomal (rARN), los ARN que tienen la función de transportar los aminoácidos activados, desde el citosol hasta el lugar de síntesis de proteínas en los ribosomas; se les conoce por ARN de transferencia (tARN) y los ARN que son portadores de la información genética y la transportan del genoma (molécula de ADN en el cromosoma) a los ribosomas son llamados ARN mensajero (mARN). El tamaño de las moléculas de ARN es mucho menor que las del ADN. En el caso de E. coli va de menos de 100 nucleótidos en los tARN hasta casi 4000 (4kb) en rARN.
Información genética. La estructura de la doble hélice para el ADN fue originalmente propuesta por Watson y Crick (WyC) en 1953, postulando que la secuencia en la cual se encuentran las bases a lo largo de la molécula de ADN es lo que contiene la información genética. No existe ningún impedimento estérico que limite la secuencia de bases, cualquier base puede seguir a cualquier otra.
Transmisión.- Con estas bases, WyC propusieron el mecanismo de duplicación del ADN por medio del cual, las dos células hijas provenientes de una división celular contienen copias idénticas del ADN presente en la célula que se dividió. A la duplicación del ADN se le conoce con el nombre de replicación.
Durante la replicación, las dos cadenas se van separando y cada una de ellas sirve de patrón para la síntesis de su cadena complementaria. Las bases se van agregando una a una y la selección de cuál base entra en un sitio específico de la cadena en formación, queda determinada por la base en la cadena patrón con la que se va a aparear.
Donde hay una A en la cadena patrón, se inserta una T en la cadena en proceso de formación y, donde hay una T se inserta una A, y lo mismo sucede con el apareamiento de G y C. La nueva cadena tiene una secuencia de bases complementaria a la cadena original.
El modelo de duplicación del ADN se dice que es semi-conservado, porque la mitad del ADN de un cromosoma, una cadena completa, proviene de la célula paterna y la otra mitad, la otra cadena, se sintetiza durante el proceso de replicación.
Este es el mecanismo propuesto por Watson y Crick para explicar la transmisión de la información genética de una generación a otra.
La formación de las uniones fosfodiester está catalizada por la ADN polimerasa. La ADN polimerasa no formará la unión fosfodiester, a menos que la base que está entrando a la molécula, sea complementaria a la base existente en la cadena patrón. La frecuencia con la que se inserta una base equivocada es menor a 1 en 100 millones.
Flujo. El apareamiento de bases es también el mecanismo para enviar la información genética desde el núcleo hasta los ribosomas y dirigir la síntesis de proteínas. En este caso una porción de una de las cadenas del ADN sirve de patrón para la síntesis de ARN y la secuencia de bases en el ARN es complementaria a la que se presenta en la porción de la cadena que se está copiando.
Al ARN que se sintetiza en esta forma se le denomina ARN mensajero o mARN. La síntesis del ARN es catalizada por la ARN polimerasa, que al igual que la ADN polimerasa es una enzima patrón-dependiente.
El mARN se une, en el citoplasma, a las dos subunidades ribosomales, constituyendo el ribosoma activo, que es la estructura celular responsable de la síntesis de proteínas. Es en este organelo donde el mARN especifica la secuencia en que deben de insertarse los aminoácidos en la síntesis de polipéptidos. Ésta es la forma en que la información contenida en los cromosomas se traduce en la especificación de la estructura primaria de las proteínas. Como ya se mencionó, la estructura primaria determina la estructura tridimensional de la proteína, la que a su vez determina su funcionalidad.
Al proceso de copiado de la información genética contenida en el ADN cromosomal durante la síntesis del mARN se le llama transcripción. Al proceso de lectura, en el ribosoma, de la información transportada por mARN, durante la síntesis de proteína, se le conoce como traducción.
Figura 1.1.1.I.- Mecanismo de replicación, transcripción y traducción
La porción de ADN que contiene la información para codificar una proteína determinada se le da el nombre de gene y normalmente recibe el mismo nombre de la proteína que codifica, usando casi siempre, una abreviación de tres letras. A la porción de ADN que codifica un conjunto de proteínas que entran en un paso del metabolismo se le llama operón. Por ejemplo; al conjunto de genes que intervienen en la codificación de las proteínas que intervienen en la utilización de lactosa se les llama lac operón.
El lenguaje utilizado para describir el proceso de dirección de la síntesis de proteínas por los genes del cromosoma refleja la interpretación de que se trata de un flujo de información.
U | C | A | G | ||
U | Phe Phe Leu Leu | Ser Ser Ser Ser | Tyr Tyr Alto Alto | Cys Cys Alto Trp | U C A G |
C | Leu Leu Leu Leu | Pro Pro Pro Pro | His His Gln Gln | Arg Arg Arg Arg | U C A G |
A | Ile Ile Ile Met (Inicio) | Thr Thr Thr Thr | Asn Asn Lys Lys | Ser Ser Arg Arg | U C A G |
G | Val Val Val Val | Ala Ala Ala Ala | Asp Asp Glu Glu | Gly Gly Gly Gly | U C A G |
Primera Posición (5'-) | Segunda Posición | Tercera Posición (3'-) |
El mensaje que está contenido en el genoma se encuentra escrito en un lenguaje de 4 letras (las cuatro bases), el cual se transcribe usando el mismo lenguaje, al sintetizar el mARN. La síntesis de proteínas se le denomina traducción porque ahora se pasa del lenguaje de 4 letras a otro con 20 letras (los 20 aminoácidos). Para pasar de un lenguaje a otro se necesita un código para hacer la traducción y se le denomina código genético.
Las equivalencias entre los dos lenguajes se presentaron en la tabla anterior. Tres bases contiguas (un triplete) codifican un aminoácido, así como también para la puntuación del mensaje. Se determinó qué tripletes codifican cada aminoácido y qué tripletes indican el inicio y la terminación del mensaje. Al triplete se le dio el nombre de codón. Se encontró que algunos aminoácidos podían ser codificados por más de un codón, o sea hay codones que son sinónimos. Por esta razón se dijo que el código genético es degenerado.
Modificaciones. Al estudio de las bases moleculares de la herencia se le conoce como genética molecular o biología molecular y a las modificaciones artificiales del ADN con el fin de cambiar el mensaje genético que contiene se le conoce como ingeniería genética.
Se pueden agregar porciones de ADN que contienen genes que no están presentes en el cromosoma incrementando el número de genes de la célula, o bien se pueden inducir cambios que eliminen genes activos presentes en la célula haciendo en este caso que la célula pierda cierta capacidad genética.
Cuando se modifica la molécula de ADN de un organismo agregándole porciones de ADN provenientes de otro organismo se dice que se hizo una recombinación del ADN y al resultado se le llama ADN recombinante. Esta técnica se usa para producir organismos capaces de hacer funciones que el organismo original no tenía. Por ejemplo se puede introducir en una bacteria el gene de la insulina humana y la bacteria adquirirá la capacidad de sintetizar ese polipéptido.
Tipo de mutación
|
Secuencia del ADN
|
Secuencia del
polipéptido Cadena superior |
Ninguna | AAT CGG GAG TTA GCC CTC | Asn Arg Val |
Transversión (GC:TA) | AAT CCG TAG TTA GCC ATC | Asn Arg (fin) |
Transición GC:AT | AAT ACC AAG TTA GCC TTC | Asn Arg Lis |
Incerción, cambio de marco Produce la sig. secuencia | AXA TCG GGA T T AGC CCT ATA TCG CCT TAT AGC CCT | Ileu Ser Gli |
En párrafos anteriores se mencionó que la replicación del ADN se hace con gran fidelidad, con una frecuencia de errores del orden de 10-8, sin embargo, sí ocurren errores.
Si se substituye una purina por otra, o una pirimidina por otra, al cambio se le llama transición; si se substituye una purina por una pirimidina al cambio se le llama transversión; si se agrega o elimina una base entonces se produce lo que se llama un cambio de marco. En este último caso, se lee en forma errónea todo el mensaje que sigue al punto de cambio. En algunas ocasiones, cuando se modifica una de las bases y la ADN polimerasa no la identifica, entonces introduce una A y el cambio final será la introducción de una T en la cadena patrónLa célula tiene mecanismos para eliminar los errores o cambios que ocurren en el ADN, bien sea durante la síntesis o cuando ya está formado. Si la célula no repara los cambios y entra en el proceso de duplicación con el ADN modificado, el cambio se fija y se vuelve permanente. El gene modificado puede ahora codificar una proteína diferente, y si este es el caso, se dice que tuvo lugar una mutación. En la Tabla 1.1.1.B se presenta el efecto de los cambios en el ADN sobre la estructura primaria del polipéptido que codifica.
Existen varias substancias que incrementan significativamente la frecuencia con la que ocurren cambios en las bases que se introducen en el ADN que se está sintetizando y se les denomina mutágenos. La mayoría de los cancerígenos son mutágenos.
Mutágeno
|
Mecanismo
|
Resultado en el ADN
|
Agentes alquilantes (nitrosourea,nitrosoguanidina) | Se une covalentemente y forma sitios apurínicos | Transición y transversión |
Agentes desaminantes (ácido nitroso) | Adenina-hipoxantina y citosina-uracilo | Transición |
Base análoga (2-aminopurina) | Substitución durante la replicación del ADN | Transición |
Agente intercalante (antridinas, antraciclinas) | Inserción o eliminación de pares de bases | Cambio de cuadro |
Fraccionadores de las cadenas (radiaciones ionisantes) | Translocación cromosomal | Cambio de una o más bases |
Si la substitución, inserción o eliminación de una base tuvo lugar en alguna parte del ADN que codifica una proteína, entonces puede cambiar un codón y dar lugar a una modificación que produzca la introducción de un aminoácido diferente o se codifique por terminación de la cadena peptídica.
Las mutaciones se clasifican de acuerdo al efecto que tienen sobre el producto del gene modificado. Se dice que la mutación es: 1) sin sentido, si el producto es inactivo o incompleto, 2) de pérdida del sentido, si el producto es defectuoso y 3) silenciosa, si no se altera ni la función ni la cantidad del producto activo.
No hay comentarios:
Publicar un comentario