lunes, 30 de marzo de 2015

zoología


Fisiología animal : La gigantotermia u homeotermia inercial es un fenómeno de importancia en la biología y la paleontología por el cual los animales de sangre fría de voluminoso tamaño tienen mayor facilidad de poder mantener una temperatura constante, en virtud de una mayor relaciónvolumen/superficie.La lógica detrás del funcionamiento de la gigantotermia es simple: un animal grande tiene proporcionalmente menos superficie de su cuerpo en contacto con el exterior, siendo la mayor parte de su masa la que se encuentra en su interior sin contacto externo —como los tejidos, órganos, sangre—, a diferencia de los animales más pequeños que tienen la mayoría de sus áreas del cuerpo en contacto con el exterior. Por ello, las ganancias o pérdidas de calor en el ambiente suceden más lentamente.2

Cabe aclarar que la gigantotermia solo tiene sentido verdadero en los animales de sangre fría pues en ellos es muy necesario mantener la temperatura ya que no pueden quemar combustible interno para producir calor, a diferencia de los animales de sangre caliente. Es incorrecto decir que un elefante se vale de la gigantotermia, ya que es un animal de sangre caliente que usa la homeotermia para mantener su temperatura, por lo que en él la gigantotermia se vuelve innecesaria.
Entre los animales en que se presenta la gigantotermia, por mencionar algunos, esta la tortuga laúd y el gran tiburón blanco.




La hematosis (del griego αἱμάτωσις [aimátosis], ‘cambio en sangre’)1 es el proceso de intercambio gaseoso entre el ambiente exterior y la sangre de un animal, cuya finalidad es la fijación de oxígeno (O2) y la eliminación de dióxido de carbono (CO2) durante la respiración.2En todos los organismos se produce por difusión simple, es decir, a favor del gradiente de presión parcial y sin gasto energético.3 Por ello la presión parcial del oxígeno en el ambiente exterior es determinante en el proceso, y el organismo responde de diversas maneras a las variaciones de esta magnitud.- .................................................:http://es.wikipedia.org/w/index.php?title=Especial:Libro&bookcmd=download&collection_id=1945b70484b8598deabd913dea8ccbbbe256f223&writer=rdf2latex&return_to=Hematosis



Respiracion y hematosis

El intercambio de gases entre el organismo y el ambiente se conoce como respiración. Durante este proceso, el organismo capta oxígeno desde el medio ambiente para suministrarlo a las células del cuerpo. Por otra parte, el dióxido de carbono generado en la respiración celular se elimina al ambiente. Este intercambio de gases es posible gracias a las diferentes estructuras que forman el aparato respiratorio (Fig. 8).
Esquema uno sistema respiratorio
Esquema dos sistema respiratorio
Fig. 8: Estructuras del sistema respiratorio humano.
Las vías respiratorias, desde las fosas nasales hasta los bronquiolos terminales, se mantienen húmedas gracias a la presencia de una capa de células, el epitelio, que produce una sustancia llamada moco. El moco humedece el aire e impide que las delicadas paredes alveolares se sequen, a la vez que atrapa a las partículas de polvo y sustancias extrañas que se inhalan.
También existen células ciliadas. Los cilios son especies de pelos en la superficie de la célula que tienen movimientos ondulatorios. Estos movimientos hacen que el moco fluya lentamente hacia la laringe. Luego el moco y las partículas que lleva atrapadas son deglutidas o expulsadas al exterior por medio de la tos.
La respiración es posible gracias a que la cavidad torácica está cerrada, de modo que el aire solamente puede entrar por la tráquea. En este proceso podemos distinguir dos fases:
Inspiración: músculos intercostales y diafragma se contraen, aumenta el volumen de la caja torácica y de los pulmones y el aire llena a estos últimos.
Espiraciónmúsculos intercostales y diafragma se relajan, disminuye el volumen de la caja torácica y de los pulmones y el aire es expulsado de estos últimos.
¿Cómo y dónde se produce el intercambio gaseoso? Cuando el aire entra en los pulmones, circula por los bronquios y luego por las divisiones repetidas de los bronquiolos, que dan lugar a los bronquiolos terminales o respiratorios. Estos, a su vez, se abren en el conducto alveolar, del cual derivan los sacos aéreos. La pared de cada conducto alveolar y de los sacos aéreos están formadas por varias unidades llamadas alvéolos (Fig. 9).
Esquema de alvéolo
Fig. 9: Estructura del alvéolo.
Los alvéolos están revestidos por una monocapa muy delgada de células epiteliales y poseen una alta irrigación sanguínea, lo que permite que los gases se difundan libremente a través de la pared de los alvéolos hacia los capilares sanguíneos (Fig. 10), en donde los glóbulos rojos serán los encargados de transportar el oxígeno hasta las células.
Esquema de intercambio gaseoso en alvéolo
Fig. 10: Relaciones de intercambio gaseoso entre alvéolo y circulación sanguínea.

Respiración, proceso fisiológico por el cual los organismos vivos toman oxígeno del medio circundante y desprenden dióxido de carbono. El término respiración se utiliza también para el proceso de liberación de energía por parte de las células, procedente de la combustión de moléculas como los hidratos de carbono y las grasas. El dióxido de carbono y el agua son los productos que rinde este proceso, llamado respiración celular, para distinguirlo del proceso fisiológico global de la respiración. La respiración celular es similar en la mayoría de los organismos, desde los unicelulares, como la ameba y el paramecio, hasta los organismos superiores (véase Metabolismo). Para más información sobre la respiración en plantas, véase Fotosíntesis.
2

El proceso de la respiración

Los organismos de los reinos Protistas y Móneras no tienen mecanismos respiratorios especializados, sino que realizan el intercambio de oxígeno y dióxido de carbono por difusión, a través de la membrana celular. La concentración de oxígeno en el interior del organismo es menor que la del medio exterior (aéreo o acuático), mientras que la concentración de dióxido de carbono es mayor. Como resultado, el oxígeno penetra en el organismo por difusión y el dióxido de carbono sale por el mismo sistema. La respiración de las plantas y las esponjas se basa en un mecanismo muy parecido.
En los organismos acuáticos inferiores (más complejos que las esponjas), hay un fluido circulatorio, de composición similar a la del agua de mar, que transporta los gases respiratorios desde el exterior de los tejidos al interior de las células. Este mecanismo es necesario, ya que las células se encuentran alejadas del lugar donde se realiza el intercambio gaseoso. En los animales superiores, los órganos se especializan, aumentan la superficie de exposición del fluido circulatorio al medio externo y el sistema circulatorio transporta este medio líquido por todo el organismo. El fluido, llamado sangre, contiene pigmentos respiratorios que son moléculas orgánicas de estructura compleja, formadas por una proteína y un grupo prostético que contiene hierro.
El pigmento respiratorio más común es la hemoglobina, que está presente en la sangre de casi todos los mamíferos. Es una proteína globulina con un grupo hemo y un ion hierro. En algunos insectos, el pigmento respiratorio es la hemocianina, un compuesto similar a la hemoglobina, pero que lleva cobre en lugar de hierro. La propiedad más importante de los pigmentos respiratorios es la afinidad que poseen por el oxígeno. La hemoglobina forma una combinación química reversible con el oxígeno cuando está en contacto con un medio rico en este gas, como es la atmósfera. Este contacto tiene lugar en los capilares de los órganos respiratorios, las branquias y los pulmones. La hemoglobina en combinación con el oxígeno (la oxihemoglobina) es más ácida y, en consecuencia, provoca la disociación de los iones bicarbonato y carbonato de sodio del plasma sanguíneo. Cuando la sangre oxigenada (rica en oxihemoglobina) llega a los tejidos, el balance de oxígeno se invierte y la hemoglobina libera oxígeno. Al volverse más básica, provoca la liberación de iones sodio que se combinan con el dióxido de carbono procedente de los tejidos para formar bicarbonato de sodio. La respiración externa es el intercambio de gases entre la sangre y el exterior, y la respiración interna es el intercambio de gases entre la sangre y los tejidos. Ver Aparato circulatorio.
3

La respiración en los animales

La respiración externa de los animales acuáticos se lleva a cabo por medio de branquias que, gracias a mecanismos auxiliares, mantienen un flujo constante de agua. Las branquias están ramificadas en unas extensiones que parecen plumas. En cada ramificación, los pequeños vasos sanguíneos se subdividen de tal manera que la sangre está separada del medio acuático por dos capas celulares, una es la que forma la pared del propio capilar y la otra es el epitelio de la branquia. Los gases se difunden con facilidad a través del epitelio y, gracias a la gran superficie de contacto que se logra con la ramificación, se puede oxigenar una cantidad considerable de sangre en poco tiempo. En algunas formas de respiración aérea, como en los gusanos de tierra, la respiración tiene lugar a través de los capilares de la piel; las formas anfibias, como las ranas, respiran por la piel y por los pulmones. Los insectos respiran a través de tráqueas que tienen una apertura al exterior y se ramifican en el interior del cuerpo entre los tejidos, transportando aire a los órganos y a las estructuras internas. Los reptiles y los mamíferos respiran sólo por los pulmones; no obstante, las aves tienen unos sacos aéreos en el interior del cuerpo y unos espacios de aire en el interior de algunos huesos; y todas estas cavidades internas están conectadas con los pulmones y son una ayuda a la respiración pulmonar.
Los sistemas circulatorio y respiratorio de los animales terrestres se modifican y se adaptan según sean las condiciones ambientales del medio en que se encuentren. Por ejemplo, quienes viven en los Andes, a altitudes de 3.000 m o superiores, tienen los pulmones más grandes, los capilares más ramificados y un ritmo cardiaco más elevado. Por otra parte, su sangre contiene un 30% más de glóbulos rojos que la de las personas que viven al nivel del mar, y además son capaces de vivir con un tercio menos de oxígeno.
Los mamíferos acuáticos, en general, tienen los pulmones grandes y sistemas venosos complejos para el almacenamiento de la sangre. El volumen sanguíneo de las ballenas y las focas es un 50% mayor por kilogramo de peso que el de los seres humanos; gracias a ello pueden mantener oxigenados los tejidos del cuerpo durante mucho tiempo, sin respirar. Las ballenas pueden permanecer sumergidas desde 15 minutos hasta más de una hora, según las especies; el elefante marino puede permanecer bajo el agua 30 minutos; en el caso de las focas, cuando una de ellas se sumerge su frecuencia cardiaca desciende de 150 a 10 latidos por minuto y el contenido de oxígeno de la sangre arterial es del 20% en ese momento. Cuando la cantidad de oxígeno está próxima al 2%, la foca sale a la superficie a respirar.

No hay comentarios:

Publicar un comentario