martes, 31 de marzo de 2015

genética


HIPÓTESIS DE LA SECUENCIA (CRICK 1958)
En 1958, basándose en los siguientes experimentos previos, Francis Crick formuló la Hipótesis de la secuencia:
Relación gen-proteína:
  • Beadle y Ephrussi (1937): trasplante de discos imaginales de ojo en D. melanogaster.
  • Beadle y Tatum (1941): estudio de mutantes nutricionales en Neurospora crassa. Hiótesis "un gen - una enzima".
  • Pauling (1949): hemoglobinas normal y falciforme.
  • Neel (1949) y Beet (1949): herencia autosómica recesiva de la anemia falciforme.
Especificidad funcional de las proteínas:
  • Sanger (1955): las propiedades específicas de la insulina residen en su estructura primaria (secuencia de aminoácidos).
  • Ingram (1956, 1957): La diferencia entre la HbA y la HbS se debe a un cambio de un solo aminoácido de la posición sexta de la cadena β.
Comparación de las estructuras de los genes y de las proteínas:
  • Avery y colaboradores (1994): El ADN es el material hereditario en bacterias. Los genes son ADN.
  • Watson y Crick (1953): Modelo de la Doble Hélice. La información reside en la secuencia de nucleótidos.
Hipótesis de la secuencia (Crick, 1958) propone lo siguiente: "Existe una relación entre la ordenación lineal de los nucleótidos en los ácidos nucleicos (ADN) y la ordenación lineal de los aminoácidos en las proteínas".
La hipótesis de la secuencia fue admitida inmediatamente por la comunidad científica a pesar de que no estaba demostrada.
DEMOSTRACIÓN DE LA HIPÓTESIS DE LA SECUENCIA: PRINCIPIO DE COLINEALIDAD (YANOFSKY Y COL., 1964, SARABHAI Y COL. 1964).
La demostración de la hipótesis de la secuencia se realizó varios años después de su formulación por Crick, en 1964 dos grupos de investigación publicaron resultados que la confirmaban. La demostración de la hipótesis de la secuencia se ha denominado "Principio de colinealidad".
La demostración de la hipótesis de la secuencia requiere comparar la secuencia de nucleótidos en el ADN con la secuencia de aminoácidos de la proteína codificada. Sin embargo, en la época en que se formuló aún no se habían desarrollado las técnicas de secuenciación de ácidos nucleicos, por tanto, fue necesario utilizar un sistema diferente para compara los cambios o mutaciones en el ADN con los cambios en la proteína. Lo que si se podía hacer en aquella época era construir un mapa genético de las mutaciones en el ADN.
Los mapas genéticos permiten ordenar las mutaciones en el ADN y averiguar la distancia genética a la que se encuentran dos mutaciones. La distancia genética no es una distancia física en pares de bases, pero está íntimamente relacionada con la distancia física. La distancia genética se basa en la frecuencia con la que aparecen recombinantes (individuos con nuevas combinaciones) entre los descendientes de un cruzamiento, de manera que cuanto más alejadas están entre sí dos mutaciones en el ADN mayor es la frecuencia de entrecruzamiento entre ellas y mayor la frecuencia de descendientes recombinantes (con ambas mutaciones o sin ninguna de ellas). Cuanto mas cerca están dos mutaciones en el ADN menor es la probabilidad de entrecruzamiento entre ambas y menor es la frecuencia de descendientes recombinantes. De esta forma es posible construir un mapa de las mutaciones en el ADN y compararlo con un mapa de los aminoácidos alterados en la proteína correspondiente. Dado que las técnicas de secuenciación de proteínas si estaban disponibles en la esa época, era posible averiguar el aminoácido alterado por cada mutación.
La probabilidad de entrecruzamiento entre dos mutaciones muy cercanas es muy bajaCuanto más alejadas están dos mutaciones mayor es la frecuencia de recombinantes
Las dos demostraciones existentes de la hipótesis de la secuencia se basaron en el procedimiento anteriormente descrito y son las siguientes:
EXPERIMENTO DE YANOSFKY Y COL. (1964)
Yanofsky y col (1964) trabajaron con el gen A de la triptófano sintetasa de E. coli que codifica para la polipéptido A. Estudiaron 16 mutantes distintos que tenían alterado un aminoácido diferente del polipéptido A de la triptófano sintetasa. Mediante técnicas secuenciación de proteínas consiguieron averiguar el aminoácido alterado de la secuencia del polipéptido y elaboraron un mapa de polipéptido en el que se indicaba el orden los aminoácidos cambiados en cada mutante. Además, elaboraron otro mapa genético en el que figuraba el orden de las mutaciones en el ADN y la distancia genética entre ellas. Este mapa genético lo realizaron mediante transducción, proceso por el que un bacteriofago lleva información (ADN) de una bacteria a otra. Posteriormente, compararon el mapa genético con el orden de las mutaciones en el ADN y el mapa del polipéptido con el orden de los aminoácidos alterados. Como conclusión encontraron que el orden de las mutaciones en el ADN y de los aminoáciods alterados en el polipéptido era el mismo, por tanto, existía colinealidad. Además, las frecuencias de recombinación genética (distancias genéticas) entre los mutantes en el ADN eran "representativos" de las distancias entre los aminoácidos alterados en el polipéptido correspondiente.
En la siguiente gráfica se ha representado en la parte superior el orden de los genes del operón triptófano e inmediatamente debajo el mapa genético, orden de las mutaciones en el ADN y valores de la frecuencia de recombinación entre mutaciones. En la parte inferior se ha representado el mapa del polipéptido con los los aminoácidos alterados por cada mutación.
Resumen de los resultados de Yanofsky y col (1964)Yanofsky
Se puede comprobar que cuando la frecuencia de recombinación entre dos mutaciones en el ADN es alta (1.6), por ejemplo, A3 y A446, la distancia entre los aminoácidos cambiados es mayor (A3 cambia glu por val y A446 cambia tyr por cys).  Mientras que cuando la frecuencia de recombinación es pequeña (0.04), por ejemplo, A446 y A487, la distancia entre los aminoácidos alterados es también muy pequeña (A446 cambia tyr por cys y A487 cambia leu por arg).
Una curiosidad que se produce en algunos casos, en bacterias como E. coli, es que el orden en el que se encuentran los genes en el operón triptófano coincide con el orden de actuación de los polipéptidos en cada uno de los pasos de la ruta de síntesis del triptófano.
EXPERIMENTO DE SARABHAI Y COL. (1964)
Trabajaron con mutantes de terminación ámbar del en el fago T4. Estos mutantes afectaban al  gen que codifica para la proteína de la cápside del virus. Se trata de mutaciones que provocan la aparición de un triplete sin sentido o triplete de FIN prematuro, en una posición anterior a la habitual, de manera que el polipéptido que aparece presenta una longitud menos a la normal. Dichos investigadores realizaron un mapa de la mutaciones en el ADN, indicando su posición y la distancia genética y también elaboraron un mapa del polipéptido de la cápside, ordenando por longitudes de menor a mayor tamaño, los polipéptidos producidos por cada uno de los mutantes analizados. Compararon ambos mapas (ADN y polipéptidos) y , al igual que Yanosfky y col., encontraron existencia de colinealidad entre orden lineal de las mutaciones en el ADN y las longitudes de los polipéptidos mutantes. En el siguiente gráfico se representa el ADN del gen del pilipéptido de la cápside de T4 y en la parte inferior el polipéptido normal y los polipéptidos de los diferentes mutantes analizados ordenados de mayor a menor longitud.
Resumen de los experimentos de Sarabhai y col (1964)Virus T4

No hay comentarios:

Publicar un comentario