sábado, 5 de noviembre de 2016

Mecánica - La mecánica clásica


flotación es un proceso fisicoquímico de tres fases (sólido-líquido-gaseoso) que tiene por objetivo la separación de especies minerales mediante la adhesión selectiva de partículas minerales a burbujas de aire. En química, es una mezcla heterogénea a nivel molecular o iónico de dos o más especies químicas que no reaccionan entre sí, cuyos componentes se encuentran en proporción que varía entre ciertos límites.
Toda disolución está formada por un soluto y un medio dispersante denominado disolvente o solvente. El disolvente es la sustancia que está presente en el mismo estado de agregación que la disolución misma; si ambos (soluto y disolvente) se encuentran en el mismo estado, el disolvente es la sustancia que existe en mayor cantidad que el soluto en la disolución; en caso que haya igual cantidad de ambos (como un 50% de etanol y 50% de agua), la sustancia que es más frecuentemente utilizada como disolvente es la que se designa como tal (en este caso, el agua). Una disolución puede estar formada por uno o más solutos y uno o más disolventes. Una disolución será una mezcla en la misma proporción en cualquier cantidad que tomemos (por pequeña que sea la gota), y no se podrán separar por centrifugación ni filtración.
Un buen ejemplo podría ser un sólido disuelto en un líquido, como la sal o el azúcar disuelto en agua (o incluso el oro en mercurio, formando una amalgama). Esto nos lleva al importante concepto llamado flotación, que se trata con el principio de Arquímedes.
Cuando un cuerpo se sumerge total o parcialmente en un fluido, una cierta porción del fluido es desplazado. Teniendo en cuenta la presión que el fluido ejerce sobre el cuerpo, se infiere que el efecto neto de las fuerzas de presión es una fuerza resultante apuntando verticalmente hacia arriba, la cual tiende,en forma parcial, a neutralizar la fuerza de gravedad, también vertical, pero apuntando hacia abajo. La fuerza ascendente se llama fuerza de empuje o fuerza de flotación y puede demostrarse que su magnitud es exactamente igual al peso del fluido desplazado. Por tanto, si el peso de un cuerpo es menor que el del fluido que desplaza al sumergirse, el cuerpo debe flotar en el fluido y hundirse si es más pesado que el mismo volumen del líquido donde está sumergido. El principio de Arquímedes es un enunciado de esta conclusión, del todo comprobada, que dice que todo cuerpo total o parcialmente sumergido en un fluido, está sometido a una fuerza igual al peso del fluido desalojado.
Este principio explica el funcionamiento de un tipo de hidrómetro empleado universalmente en los talleres para determinar el peso específico del líquido de las baterías de los automóviles. Un flotador se hunde o no hasta cierta señal, dependiendo del peso específico de la solución en la que flota. Así, el grado de carga eléctrica de la batería puede determinarse, pues depende del peso específico de la solución.

Resultado de imagen de Flotación
Resultado de imagen de Flotación

Resultado de imagen de Flotación


Resultado de imagen de Flotación











frecuencias denominadas naturales o resonantes cuando éste es excitado. Para cada frecuencia natural, el sólido adquiere una determinada forma denominada forma modal. El análisis de frecuencia calcula las frecuencias naturales y las formas modales asociadas.

Caracterización y comportamiento de la frecuencia natural

Cuando la frecuencia de la fuente emisora de ondas coincide con la frecuencia natural del resonador (objeto que oscila) se llega a una condición conocida como resonancia. La resonancia se define como la tendencia de un sistema físico a oscilar con una amplitud mayor en algunas frecuencias. La amplitud del sistema oscilante depende de la magnitud de la fuerza que se le aplique periódicamente al emisor de ondas y también está relacionada con las frecuencias de ondas del emisor y la frecuencia natural del sistema oscilante. Si la diferencia entre la frecuencia del emisor y la frecuencia del resonador es grande la amplitud del sistema resonador será mínima. Al igual que mientras más diferentes sean las frecuencias entre el generador y el resonador, se requerirá de mayor cantidad de energía para crear determinadas amplitudes de oscilación. En condición de resonancia, una fuerza de magnitud pequeña aplicada por el emisor puede lograr grandes amplitudes de oscilación en el sistema resonador, creando con ello perturbaciones marcadas en el sistema resonador.1

Resonadores

Un sistema físico puede tener tantas frecuencias naturales o de resonancia como grados de libertad; cada grado de libertad puede vibrar como un oscilador armónico. Los sistemas que tienen un solo grado de libertad, tales como una masa conectada a un resorte, péndulosvolantes reguladores, y circuitos RLC tienen una sola frecuencia de resonancia. Los sistemas con dos grados de libertad, tales como los péndulos acoplados y transformadores resonantes pueden tener dos frecuencias de resonancia. En la medida que aumenta el número de osciladores armónicos acoplados, el tiempo requerido para transferir energía entre ellos se vuelve significativo. Las vibraciones en ellos comienzan a desplazarse mediante ondas a través de los osciladores armónicos acoplados, de un oscilador al siguiente.
Aquellos objetos dentro de los cuales pueden producirse resonancia a causa de vibraciones dentro de ellos se denominan resonadores, como ser tubos de órganoscuerdas vibrantescristales de cuarzo, cavidades de microondas, y barras láser. Dado que es posible interpretar que cada uno está formado de millones de partes móviles acopladas (como por ejemplo átomos), ellos pueden tener millones de frecuencias resonantes. Las vibraciones se transmiten dentro de ellos en forma de ondas, a una velocidad aproximadamente constante, rebotando una y otra vez entre los lados del resonador. Si la distancia entre los lados es , la longitud de un viaje completo es . Para que se pueda producir una resonancia, la fase de una onda sinusoidal luego de un viaje de ida y vuelta debe ser igual a la fase inicial, de forma tal que las ondas se refuercen. Por lo que la condición para que se produzca resonancia en un resonador es que la distancia del viaje de ida y vuelta, , sea igual a un número entero de longitudes de onda  de la onda:
Si la velocidad de una onda es , la frecuencia es  por lo que las frecuencias resonantes son:
Por lo tanto las frecuencias resonantes de los resonadores, denominadas modos normales, son múltiplos equiespaciados de la menor frecuencia denominada la frecuencia fundamental.

Análisis Físico de las frecuencias

Para hacer el análisis del efecto de resonancia y facilitar su entendimiento, se analiza el efecto “columpio” de un muelle elástico, el cual tiene una fuerza interna denominada (F) la cual se opone a las perturbaciones de una fuerza externa; en caso de ser expuesto a una fuerza externa comienza a oscilar infinitamente, es decir se moverá con un comportamiento de movimiento armónico simple y esto corresponderá a una función senoidal que representará oscilaciones en una frecuencia natural(w0).2
Se analizan las ecuaciones:
Partiendo de la ecuación para un resorte:
Donde:
k = Constante física de elasticidad del objeto (muelle)
x= es el desplazamiento que presenta el cuerpo
Basándose en la segunda ley de Newton:
Tenemos:
Es decir:
Analizando la ecuación del movimiento armónico simple:
Y derivándola dos veces:
Se igualan las ecuaciones 1 y 2.
Sustituimos x por  para que nos quede:
Si despejamos W0 tenemos que:
Una fuerza oscilante como la del columpio en ausencia de amortiguamiento, o fuerzas no conservativas los osciladores subirán y bajarán debido a la fuerza interna del sistema de acuerdo a la ecuación:
En dado caso que se aplique una fuerza externa al sistema tenemos:

Siguiendo con el análisis de fuerzas externas:
Y derivándola dos veces:

Se igualan las ecuaciones 4 y 5.
Simplificando:

Despejando A:
Si sustituimos la aceleración llegamos a una expresión:
Donde A representa la amplitud de las nuevas oscilaciones creada por la fuerza externa, la Amplitud está determinada por la magnitud de la Fuerza y también de la proximidad de frecuencias entre la frecuencia natural w0 y la frecuencia w.
En un sistema oscilante ya sea un puente, muelle, instrumento musical o copa de vidrio, la amplitud de las oscilaciones provocada por la fuerza externa estará determinada por la proximidad de las frecuencias.

Análisis Gráfico de la frecuencia natural

En la siguiente gráfica se observa la amplitud de un sistema resonante, para una magnitud constante de fuerza que es aplicada periódicamente, en relación a frecuenciadel generador y la frecuencia natural del resonador.

No hay comentarios:

Publicar un comentario