sábado, 5 de noviembre de 2016

Mecánica - La mecánica clásica


diagrama de cuerpo libre es una representación gráfica utilizada a menudo por físicos e ingenieros para analizar las fuerzas que actúan sobre un cuerpo libre. El diagrama de cuerpo libre es un elemental caso particular de un diagrama de fuerzas. En español, se utiliza muy a menudo la expresión diagrama de fuerzas como equivalente a diagrama de cuerpo libre, aunque lo correcto sería hablar de diagrama de fuerzas sobre un cuerpo libre o diagrama de fuerzas de sistema aislado. Estos diagramas son una herramienta para descubrir las fuerzas desconocidas que aparecen en las ecuaciones del movimiento del cuerpo. El diagrama facilita la identificación de las fuerzas y momentos que deben tenerse en cuenta para la resolución del problema. También se emplean para el análisis de las fuerzas internas que actúan en estructuras.

Elaboración

Un esquema del cuerpo en cuestión y de las fuerzas que actúan sobre él representadas como vectores. La elección del cuerpo es la primera decisión importante en la solución del problema. Por ejemplo, para encontrar las fuerzas que actúan sobre una bisagra o un alicate,es mejor analizar solo una de las dos partes, en lugar del sistema entero, representando la segunda mitad por las fuerzas que ejerce sobre la primera.

Fuerzas internas desarrolladas en elementos estructurales

Para diseñar un elemento estructural o mecánico es necesario conocer la carga que actúa dentro de él para asegurarnos de que el material puede resistir esta carga. Las cargas internas pueden determinarse por el método de secciones, seccionando o cortando imaginariamente una sección perpendicular al eje de la viga. Las cargas internas que actúan sobre el elemento quedarán expuestas y se volverán externas en el diagrama de cuerpo libre de cada segmento.
  • Los componentes de la fuerza (N) que actúa en perpendicular a la sección transversal se denomina fuerza Normal.
  • Los componentes de la fuerza (V) que es tangente a la sección transversal se llama fuerza cortante.
  • El momento de par (M) se conoce como momento flector.3

Lo que hay que incluir

El esquema del cuerpo debe llegar solo al nivel de detalle necesario. Un simple esbozo puede ser suficiente y en ocasiones, dependiendo del análisis que se quiera realizar, puede bastar con un punto.
Todas las fuerzas externas se representan mediante vectores etiquetados de forma adecuada. Las flechas indican la dirección y magnitud de las fuerzas y, en la medida de lo posible, deberían situarse en el punto en que se aplican.
Solo se deben incluir las fuerzas que actúan sobre el objeto, ya sean de rozamientogravitatoriasnormales, de arrastre o de contacto. Cuando se trabaja con un sistema de referencia no inercial, es apropiado incluir fuerzas ficticias como la centrífuga.
Se suele trabajar con el sistema de coordenadas más conveniente, para simplificar las ecuaciones. La dirección del eje x puede hacerse coincidir con la dirección de descenso de un plano inclinado, por ejemplo, y así la fuerza de rozamiento solo tiene componente en esa coordenada, mientras que la normal sigue el eje y. La fuerza gravitatoria, en este caso , tendrá componentes según los dos ejes,  en el x y  en el y, donde θ es el ángulo que forma el plano con la superficie horizontal.

Lo que no hay que incluir

Las fuerzas que el cuerpo ejerce sobre otros cuerpos. Por ejemplo, si una pelota permanece en reposo sobre una mesa, la pelota ejerce una fuerza sobre esta, pero en el diagrama de cuerpo libre de la primera solo hay que incluir la fuerza que la mesa ejerce sobre ella.
También se excluyen las fuerzas internas, las que hacen que el cuerpo sea tratado como un único sólido. Por ejemplo, si se analiza las fuerzas que aparecen en los soportes de una estructura mecánica compleja, como el tablero de un puente, las fuerzas internas de las distintas partes que lo forman no se tienen en cuenta.

Suposiciones

El diagrama de cuerpo libre refleja todas las suposiciones y simplificaciones que se han hecho para analizar el problema. Si el cuerpo en cuestión es un satélite en órbita y lo primordial que se desea es encontrar su velocidad, un punto puede ser la mejor opción. Los vectores deben colocarse y etiquetarse con cuidado para evitar suposiciones que condicionen el resultado. En el diagrama ejemplo de esta entrada, la situación exacta de la fuerza normal resultante que la rampa ejerce sobre el bloque solo puede encontrarse después de analizar el movimiento o de asumir que se encuentra en equilibrio.

Ejemplo

El diagrama de cuerpo libre del bloque sobre el plano inclinado es una aplicación sencilla de estos principios:
  • Todos los soportes y estructuras se han sustituido por las fuerzas que ejercen sobre el bloque:
  • mg: peso del bloque.
  • N: Fuerza normal del plano sobre el bloque.
  • Ff: fuerza de rozamiento entre el bloque y el plano.
  • Los vectores muestran la dirección y el punto de aplicación.
  • Se acompaña del sistema de referencia que se ha usado para describir los vectores.



Bloque sobre un plano inclinado (arriba) y diagrama de cuerpo libre de ese mismo bloque (abajo).

Diagramas de cuerpo libre

Un diagrama de cuerpo libre muestra a un cuerpo aislado con todas las fuerzas (en forma de vectores) que actúan sobre él (incluidas, si las hay, el pesola normalel rozamiento, la tensión, etc). No aparecen los pares de reacción, ya que los mismos están aplicados siempre en el otro cuerpo.

Ejemplos

1) Cuerpo sobre el piso con una fuerza ejercida sobre el mismo, además del peso y su normal.

Diagrama de Cuerpo Libre

2) Cuerpo sostenido por cuerdas con el peso y las dos tensiones con diferente ángulo.

Diagrama de Cuerpo Libre




Diferencias entre masa y peso


La masa y el peso son diferentes propiedades, que se definen en el ámbito de la física. La masa es una medida de la cantidad de materia que posee un cuerpo mientras que el peso es una medida de la fuerza que es causada sobre el cuerpo por el campo gravitatorio.
Por lo tanto la masa de un objeto no cambiará de valor sea cual la ubicación que tenga sobre la superficie de la Tierra(suponiendo que el objeto no está viajando a velocidades relativistas con respecto al observador),1 mientras que si el objeto se desplaza del ecuador al Polo Norte, su peso aumentará aproximadamente 0,5 % a causa del aumento del campo gravitatorio terrestre en el Polo.2
En forma análoga, en el caso de astronautas que se encuentran en condiciones de micro gravedad, no es preciso realizar ningún esfuerzo para levantar objetos del piso del compartimento espacial; los mismos “no pesan nada”. Sin embargo, dado que los objetos en micro gravedad todavía poseen su masa e inercia, un astronauta debe ejercer una fuerza diez veces más grande para acelerar un objeto de 10 kilogramos a la misma tasa de cambio de velocidad que la fuerza necesaria para acelerar un objeto de 1 kilogramo.
En la Tierra, una simple hamaca puede servir para ilustrar las relaciones entre fuerza, masa y aceleración en un experimento que no es influido en forma apreciable por el peso (fuerza vertical descendente). Si nos paramos detrás de un adulto grande que este sentado y detenido en la hamaca y le damos un fuerte empujón, el adulto se acelerará en forma relativamente lenta y la hamaca solo se desplazará una distancia reducida hacia adelante antes de comenzar a moverse en dirección para atrás. Si ejerciéramos la misma fuerza sobre un niño pequeño que estuviera sentado en la hamaca se produciría una aceleración mucho mayor, ya que la masa del niño es mucho menor que la masa del adulto.

Consideraciones

La masa de la materia influye de manera importante sobre numerosas propiedades cinemáticas en situaciones cotidianas.
La masa se corresponde con el concepto común de cuán “pesado” es un objeto. Sin embargo, en realidad la masa es una propiedad inercial; o sea la tendencia de un objeto a permanecer moviéndose con una velocidad constante a menos que una fuerza externa actúe sobre él. Según la Segunda ley de Newton, expresada por la fórmula F = ma un objeto con una masa, m, de un kilogramo sufrirá una aceleracióna, de un metro por segundo al cuadrado (aproximadamente un décimo de la aceleración causada por la gravedad terrestre)3 cuando actúe sobre el mismo una fuerza, F, de un newton.
La inercia se puede percibir cuando se empuja una bola de boliche en forma horizontal en una superficie suave horizontal. Esto es muy distinto del “peso”, que es la fuerza gravitacional descendente de la bola de boliche para levantar la bola desde el suelo. Por ejemplo, el peso de un astronauta en la Luna es aproximadamente un sexto de su peso cuando está en la Tierra, aunque su masa no ha cambiado de manera apreciable durante el viaje. Por lo tanto, toda vez que la física de la cinética de choques (masa, velocidad, inercia, choques inelásticos y elásticos) domina y la influencia de la gravedad es un factor menor, el comportamiento de los objetos permanece inalterado aun en sitios en que la gravedad es relativamente débil. Por ejemplo, las bolas de una mesa de billar se dispersan y rebotan con las mismas velocidades y energías después de un golpe de forma similar en la Tierra y en la Luna; sin embargo, en la Luna caerán dentro de las troneras de la mesa de forma mucho más lenta.
En las ciencias físicas, los términos “masa” y “peso” se definen en forma clara como medidas distintas para promover la claridad y precisión. En el uso cotidiano, dado que todas las masas en la Tierra tienen peso y que esta relación es por lo general altamente proporcional,4 el “peso” a menudo sirve para describir ambas propiedades, su significado dependiendo del contexto. Por ejemplo, en el comercio, el “peso neto” de los productos puestos a la venta en realidad se refiere a la masa y es correctamente expresado en kilogramos o libras (Estados Unidos).
Debido a que la masa y el peso son unidades distintas, poseen diferentes unidades de medida. En el Sistema Internacional de Unidades (Sistema internacional), el kilogramo es la unidad de masa, y el newton es la unidad de fuerza. El kilogramo-fuerza una unidad que no es SI a veces es una unidad de fuerza también utilizada para medir pesos.

Cuadro Comparativo

La masaEl peso
la masa es la cantidad de materia de los cuerposel peso es la fuerza que ejerce la gravedad sobre una masa
La masa se mide en kilogramos(Kg)El peso se mide en newtons(N)
La masa es una Magnitud tensorial extensivaEl peso es una Magnitud vectorial extensiva
La masa se mide con la balanzael peso se mide con el dinamómetro

Tipos de balanzas y qué es lo que miden

Una balanza de platillos: la misma no es afectada por la intensidad de la gravedad.
Desde un punto de vista técnico, cada vez que alguien se para sobre una báscula de contrapesos (o balanza romana) en el consultorio de un médico, lo que en realidad se mide es su masa. Esto es porque en este tipo de balanzas (comparadores de masa de “doble platillo”) se compara el peso de la masa en la plataforma con el de unos contrapesos que se deslizan sobre el brazo con marcas; la gravedad es solo el mecanismo que genera la fuerza que permite que la aguja se desplaze con respecto a la posición de equilibrio o “balance” (cero). Este tipo de balanzas pueden ser desplazadas desde el ecuador a los polos y no indicarán variaciones en sus lecturas; son inmunes a la fuerza centrífuga que genera la Tierra al rotar sobre su eje que contraarresta la gravedad.
Balanza de toilet que utiliza una celda de carga: la medición es dependiente de la intensidad de la gravedad.
Por otra parte, cada vez que alguien se para sobre balanzas que utilizan resortes o celdas de carga digitales, técnicamente lo que miden es su peso (fuerza causada por la fuerza de gravedad). En el caso de instrumentos que miden fuerza, como los descriptos con anterioridad, las variaciones en la intensidad de la gravedad afectan su medición. Desde un punto de vista práctico, cuando se usan balanzas que miden fuerzas en el comercio o en hospitales, las mismas deben ser calibradas y certificadas en el sitio en que se utilizan de forma tal que midan masa, expresada en kilogramos o libras, con el nivel de precisión deseado.



Masa y peso son dos términos que a menudo se utilizan de manera indistinta en la vida cotidiana. Muchas personas hablan de la masa de un objeto como si fuera su peso y del peso para referirse a la masa. Pero estos conceptos son muy diferentes y a continuación veremos cuáles son esas diferencias entre ambos.

Masa

La masa es la cantidad de materia que posee un objeto. Se divide en dos tipos: masa inercial y masa gravitacional. El tipo más común usado en la Física es la masa inercial, que es una medida cuantitativa de la resistencia de un objeto a la aceleración. Por otra parte, la masa gravitacional es una medida de la magnitud de la fuerza de atracción que se ejerce sobre objeto determinado.
masa
masa
En el Sistema Internacional de Unidades, la unidad que se utiliza para medir la masa es el kilogramo (kg), mientras que en otros sistemas también se utilizan las libras (lb) y los gramos (g) para referirse a la masa.
masa corporal
masa corporal
No debe confundirse la masa con la cantidad de una sustancia. La materia y la energía bien pueden ser dos formas diferentes de la masa. De acuerdo con la Teoría de la Relatividad de Einstein, las ondas electromagnéticas también tienen masa. Según esta teoría, hay dos tipos de masa: la masa en reposo y la masa relativista. De cuerdo con esta misma teoría, la masa de un objeto no siempre se mantiene constante. La masa en reposo, como su nombre lo indica; es la masa de un objeto en reposo, mientras que la masa relativista se refiere a la masa del objeto cuando está en movimiento.
En el uso cotidiano, se utiliza el término “masa” como “peso”, pero este último está más relacionado con la materia que con la masa.

Peso

El peso se refiere a la medida de la fuerza de gravedad sobre un objeto. Éste difiere constantemente, ya que la fuerza de gravedad no es igual en todos lados (el peso de una persona no es igual en la Tierra y en la Luna. Ejemplo: una persona con una masa de 50 kg  y un peso de 491 newtons en la Tierra; en la Luna tendrá la misma masa, pero sólo pesará 81,5 newtons).
peso
peso
Generalmente, el peso se mide en newtons (N), no en (kg). En pocas palabras, el peso es la fuerza gravitatoria que actúa sobre un cuerpo, mientras que la masa es la propiedad intrínseca que no cambia.
La fórmula para calcular el peso de una sustancia es P= M*G: Peso es igual a masa por gravedad.
El concepto de peso fue desarrollado a partir de las Leyes del Movimiento y la Ley de la Gravitación Universal de Newton. Esto dio lugar a la separación del peso y la masa.
newton
newton
Cuando nos medimos a nosotros mismos, solemos llamar a eso (nuestro peso), pero en realidad lo que estamos midiendo es nuestra masa.
Hay máquinas que pueden medir nuestra masa y otras que pueden medir nuestro peso. Las máquinas que vemos en los consultorios médicos, que utilizan una escala de equilibrio para medir nuestro “peso”; en realidad lo que miden es nuestra masa.
Ahora bien, hay máquinas en las que las personas permanecen un momento paradas y al final aparece su verdadero peso (en newtons) en una pantalla. Esas sí miden el peso y no la masa.
Diferencias clave entre peso y masa
  • El peso puede variar, pero la masa es constante.
  • La masa se mide en kilogramos (kg), mientras que el peso se mide en newtons (N).
  • La masa se refiere a la cantidad de materia que posee un objeto, pero el peso hace referencia a la fuerza de gravedad que actúa sobre un objeto.

No hay comentarios:

Publicar un comentario