jueves, 30 de marzo de 2017

Epónimos relacionados con las matemáticas


distribución de Poisson es una distribución de probabilidad discreta que expresa, a partir de una frecuencia de ocurrencia media, la probabilidad de que ocurra un determinado número de eventos durante cierto período de tiempo. Concretamente, se especializa en la probabilidad de ocurrencia de sucesos con probabilidades muy pequeñas, o sucesos "raros".
Fue descubierta por Siméon-Denis Poisson, que la dio a conocer en 1838 en su trabajo Recherches sur la probabilité des jugements en matières criminelles et matière civile (Investigación sobre la probabilidad de los juicios en materias criminales y civiles).

Distribución de Poisson
=Poisson pmf.svg
El eje horizontal es el índice x. La función solamente está definida en valores enteros de k. Las líneas que conectan los puntos son solo guías para el ojo y no indican continuidad.
Función de densidad de probabilidad
=PoissonCDF.png
El eje horizontal es el índice k.
Función de distribución de probabilidad
Parámetros
Dominio
Función de probabilidad (fp)
Función de distribución (cdf) (dónde  es la Función gamma incompleta)
Media
Mediana
Moda
Varianza
Coeficiente de simetría
Curtosis
Entropía
Función generadora de momentos (mgf)
Función característica


Propiedades

La función de masa o probabilidad de la distribución de Poisson es
donde
  • k es el número de ocurrencias del evento o fenómeno (la función nos da la probabilidad de que el evento suceda precisamente k veces).
  • λ es un parámetro positivo que representa el número de veces que se espera que ocurra el fenómeno durante un intervalo dado. Por ejemplo, si el suceso estudiado tiene lugar en promedio 4 veces por minuto y estamos interesados en la probabilidad de que ocurra k veces dentro de un intervalo de 10 minutos, usaremos un modelo de distribución de Poisson con λ = 10×4 = 40.
  • e es la base de los logaritmos naturales (e = 2,71828...)
Tanto el valor esperado como la varianza de una variable aleatoria con distribución de Poisson son iguales a λ. Los momentos de orden superior son polinomios de Touchard en λ cuyos coeficientes tienen una interpretación combinatoria. De hecho, cuando el valor esperado de la distribución de Poisson es 1, entonces según la fórmula de Dobinski, el n-ésimo momento iguala al número de particiones de tamaño n.
La moda de una variable aleatoria de distribución de Poisson con un λ no entero es igual a , el mayor de los enteros menores que λ (los símbolos  representan la función parte entera). Cuando λ es un entero positivo, las modas son λ y λ − 1.
La función generadora de momentos de la distribución de Poisson con valor esperado λ es
Las variables aleatorias de Poisson tienen la propiedad de ser infinitamente divisibles.
La divergencia Kullback-Leibler desde una variable aleatoria de Poisson de parámetro λ0 a otra de parámetro λ es

Intervalo de confianza

Un criterio fácil y rápido para calcular un intervalo de confianza aproximada de λ es propuesto por Guerriero (2012).1 Dada una serie de eventos k (al menos el 15 - 20) en un periodo de tiempo T, los límites del intervalo de confianza para la frecuencia vienen dadas por:
entonces los límites del parámetro  están dadas por:.

Relación con otras distribuciones

Sumas de variables aleatorias de Poisson

La suma de variables aleatorias de Poisson independientes es otra variable aleatoria de Poisson cuyo parámetro es la suma de los parámetros de las originales. Dicho de otra manera, si
son N variables aleatorias de Poisson independientes, entonces
.

Distribución binomial

La distribución de Poisson es el caso límite de la distribución binomial. De hecho, si los parámetros n y  de una distribución binomial tienden a infinito (en el caso de 'n') y a cero (en el caso de ) de manera que  se mantenga constante, la distribución límite obtenida es de Poisson.

Aproximación normal

Como consecuencia del teorema central del límite, para valores grandes de , una variable aleatoria de Poisson X puede aproximarse por otra normal dado que el cociente
converge a una distribución normal de media 0 y varianza 1.

Distribución exponencial

Supóngase que para cada valor t > 0, que representa el tiempo, el número de sucesos de cierto fenómeno aleatorio sigue una distribución de Poisson de parámetro λt. Entonces, los tiempos transcurridos entre dos sucesos sucesivos sigue la distribución exponencial.

Ejemplos

Si el 2% de los libros encuadernados en cierto taller tiene encuadernación defectuosa, para obtener la probabilidad de que 5 de 400 libros encuadernados en este taller tengan encuadernaciones defectuosas usamos la distribución de Poisson. En este caso concreto, k es 5 y, λ, el valor esperado de libros defectuosos es el 2% de 400, es decir, 8. Por lo tanto, la probabilidad buscada es

Procesos de Poisson

La distribución de Poisson se aplica a varios fenómenos discretos de la naturaleza (esto es, aquellos fenómenos que ocurren 0, 1, 2, 3,... veces durante un periodo definido de tiempo o en un área determinada) cuando la probabilidad de ocurrencia del fenómeno es constante en el tiempo o el espacio. Ejemplos de estos eventos que pueden ser modelados por la distribución de Poisson incluyen:
  • El número de autos que pasan a través de un cierto punto en una ruta (suficientemente distantes de los semáforos) durante un periodo definido de tiempo.
  • El número de errores de ortografía que uno comete al escribir una única página.
  • El número de llamadas telefónicas en una central telefónica por minuto.
  • El número de servidores web accedidos por minuto.
  • El número de animales muertos encontrados por unidad de longitud de ruta.
  • El número de mutaciones de determinada cadena de ADN después de cierta cantidad de radiación.
  • El número de núcleos atómicos inestables que se han desintegrado en un determinado período.
  • El número de estrellas en un determinado volumen de espacio.
  • La distribución de receptores visuales en la retina del ojo humano.
  • La inventiva 2 de un inventor a lo largo de su carrera.
  • La distribución de la riqueza humana.


  DISTRIBUCIÓN  DE  POISSON.

Características:
En este tipo de experimentos los éxitos buscados son expresados por unidad de área, tiempo, pieza, etc, etc,:
- # de defectos de una tela por m2
- # de aviones que aterrizan en un aeropuerto por día, hora, minuto, etc, etc.
- # de bacterias por cm2 de cultivo
- # de llamadas telefónicas a un conmutador por hora, minuto, etc, etc.
- # de llegadas de embarcaciones a  un puerto por día, mes, etc, etc.
Para determinar la probabilidad de que ocurran x éxitos por unidad de tiempo, área, o producto, la fórmula a utilizar sería:

                                                            
donde:
p(xl) = probabilidad de que ocurran x éxitos, cuando el número promedio de ocurrencia de ellos es l
l = media o promedio de éxitos por unidad de tiempo, área o producto
e = 2.718
x = variable que nos denota el número de éxitos que se desea que ocurra

Hay que hacer notar que en esta distribución el número de éxitos que ocurren por unidad de tiempo, área o producto es totalmente al azar y que cada intervalo de tiempo es independiente de otro intervalo dado, así como cada área es independiente de otra área dada y cada producto es independiente de otro producto dado.



Ejemplos:
  1. Si un banco recibe en promedio 6 cheques sin fondo por día, ¿cuáles son las probabilidades de que reciba, a) cuatro cheques sin fondo en un día dado, b) 10 cheques sin fondos en cualquiera de dos días consecutivos?


Solución:
a)      x = variable que nos define el número de cheques sin fondo que llegan al banco en un día cualquiera = 0, 1, 2, 3, ....., etc, etc.
l = 6 cheques sin fondo por día
e = 2.718

                           


b)
x= variable que nos define el número de cheques sin fondo que llegan al banco en dos días consecutivos = 0, 1, 2, 3, ......, etc., etc.
l = 6 x 2 = 12 cheques sin fondo en promedio que  llegan al banco en dos días consecutivos
Nota: l siempre debe de estar en función de x siempre o dicho de otra forma, debe “hablar” de lo mismo que x.

                         

  1. En la inspección de hojalata producida por un proceso electrolítico continuo, se identifican 0.2 imperfecciones en promedio por minuto. Determine las probabilidades de identificar a) una imperfección en 3 minutos, b) al menos dos imperfecciones en 5 minutos, c) cuando más una imperfección en 15 minutos.
Solución:
a)      x = variable que nos define el número de imperfecciones en la hojalata por cada 3 minutos = 0, 1, 2, 3, ...., etc., etc.
l = 0.2 x 3 =0.6 imperfecciones en promedio por cada 3 minutos en la hojalata


                      

b)      x = variable que nos define el número de imperfecciones en la hojalata por cada 5 minutos = 0, 1, 2, 3, ...., etc., etc.
l = 0.2 x 5 =1 imperfección en promedio por cada 5 minutos en la hojalata

                    

                 =1-(0.367918+0.367918) = 0.26416

c)      x = variable que nos define el número de imperfecciones en la hojalata por cada 15 minutos = 0, 1, 2, 3, ....., etc., etc.
l = 0.2 x 15 = 3 imperfecciones en promedio por cada 15 minutos en la hojalata

           

                                                                                                                  = 0.0498026 + 0.149408 = 0.1992106

No hay comentarios:

Publicar un comentario