Historia
La ley fue deducida en 1879 por el físico austriaco
Jožef Stefan (1835-1893) basándose en las mediciones experimentales realizadas por el físico irlandés
John Tyndall y fue derivada en 1884 a partir de consideraciones teóricas por
Ludwig Boltzmann (1844-1906) usando la
termodinámica. Boltzmann consideró un cierto ideal
motor térmico con
luz como fuente de energía en lugar de gas. La ley es muy precisa sólo para objetos negros ideales , los radiadores perfectos, llamados
cuerpos negros; funciona como una buena aproximación para la mayoría de los
cuerpos grises. Stefan publicó esta ley en el artículo «Über die Beziehung zwischen der Wärmestrahlung und der Temperatur» (
Sobre la relación entre la radiación y la temperatura térmica) en el
Boletín de las sesiones de la Academia de Ciencias de Viena.
Demostración
Demostración matemática
Puede demostrarse haciendo la integral que:
Experimento del cubo de Leslie
La ley de Stefan-Boltzmann queda bastante clara con el experimento del
cubo de Leslie:
En general en la emisión radiante a altas temperaturas se desprecia el efecto de la temperatura del orden de la temperatura ambiente a la que se encuentran los objetos circundantes. Sin embargo debemos tener en cuenta que esta práctica estudia esta ley a bajas temperaturas para las cuales no se puede obviar la temperatura ambiente. Esto hace ver que como el detector del sensor de radiación (una
termopila no está a 0 K) irradia energía radiante y una intensidad proporcional a ésta es la que mide, luego si la despreciamos estamos falseando el resultado. Su radiación se puede cuantificar de forma proporcional a su temperatura absoluta a la cuarta potencia:
De esta forma podemos conocer la radiación neta que mide a partir del voltaje generado por el sensor sabiendo que es proporcional a la diferencia de radiación entre la absorbida y la emitida, es decir:
Por último haciendo una serie de suposiciones, como puede ser evitar que el sensor se vea influenciado por la radiación del cubo de Leslie cuando no sea necesario, tomar mediciones (podemos alejarlo), y sólo entonces podremos considerar que la temperatura del detector es la del ambiente. Con alejarlo cuando sea innecesario esta hipótesis puede ser suficiente.
Ejemplos
Primera determinación de la temperatura del Sol
Utilizando su ley Stefan determinó la temperatura de la superficie del
Sol. Tomó los datos de
Charles Soret (1854–1904) que determinó que la densidad del flujo de energía del Sol es 29 veces mayor que la densidad del flujo de energía de una fina placa de metal caliente. Puso la placa de metal a una distancia del dispositivo de la medición que permitía verla con el mismo ángulo que se vería el Sol desde la Tierra. Soret estimó que la temperatura de la placa era aproximadamente 1900
°C a 2000 °C. Stefan pensó que el flujo de energía del Sol es absorbido en parte por la
atmósfera terrestre, y tomó para el flujo de energía del Sol un valor 3/2 veces mayor, a saber
Las medidas precisas de la absorción atmosférica no se realizaron hasta
1888 y
1904. La temperatura que Stefan obtuvo era un valor intermedio de los anteriores, 1950 °C ( 2223 K). Como 2.57
4 = 43.5, la ley de Stephan nos dice que la temperatura del Sol es 2.57 veces mayor que la temperatura de una placa de metal, así que Stefan consiguió un valor para la temperatura de la superficie del Sol de 5713 K (el valor moderno es 5780 K). Éste fue el primer valor sensato para la temperatura del Sol. Antes de esto, se obtuvieron valores tan pequeños como 1800 °C o tan altos como 13 000 000 °C. El valor de 1800 °C fue hallado por
Claude Servais Mathias Pouillet (1790-1868) en
1838. Si nosotros concentramos la luz del Sol con una
lente, podemos calentar un sólido hasta los 1800 °C.
Las temperaturas y radios de las estrellas
La temperatura de las
estrellas puede obtenerse suponiendo que emiten radiación como un
cuerpo negro de manera similar que nuestro Sol. La
luminosidad L de la estrella vale:
Esta misma fórmula puede usarse para computar el radio aproximado de una estrella de la
secuencia principal y, por tanto, similar al Sol:
La temperatura de la Tierra
Podemos calcular la temperatura de la Tierra
igualando la energía recibida del Sol y la energía emitida por la Tierra. El Sol emite una energía por unidad de tiempo y área que es proporcional a la cuarta potencia de su temperatura
. A la distancia de la Tierra
a0 (
unidad astronómica), esa potencia ha disminuido en la relación entre la superficie del Sol y la superficie de una esfera de radio
a0. Además el disco de la Tierra intercepta esa radiación pero debido a la rápida rotación de la Tierra es toda la superficie de la Tierra la que emite la radiación a una temperatura
con lo que dicha potencia queda disminuida en un factor 4. Por ello:
donde
es el radio del Sol. Por ello:
Resulta una temperatura de 5 °C. La temperatura real es de 15 °C.
Resumiendo: La distancia del Sol a la Tierra es 215 veces el radio del Sol, reduciendo la energía por metro cuadrado por un factor que es el cuadrado de esa cantidad, es decir 46,225. Teniendo en cuenta que la sección que interfiere la energía tiene un área que es 1/4 de su superficie, vemos que disminuye en 184,900 veces. La relación entre la temperatura del Sol y la Tierra es por tanto 20.7, ya que 20.7 4 es 184,900 veces.
Esto muestra aproximadamente por qué T ~ 278 K es la temperatura de nuestro mundo. El cambio más ligero de la distancia del Sol podría cambiar la temperatura media de la Tierra.
En el cálculo anterior hay dos defectos. Parte de la energía solar es reflejada por la Tierra que es lo que se denomina
albedo y esto disminuye la temperatura de la Tierra hecho por el cálculo anterior hasta -18 °C y parte de la energía radiada por la Tierra que tiene una longitud larga, entre 3 y 80
micras, es absorbida por ciertos gases llamados "de efecto invernadero", calentando la atmósfera hasta la temperatura actual. El llamado
efecto invernadero es entonces, vital para la vida en el planeta.
Para calcular la
constante solar o energía emitida por el Sol por unidad de tiempo y área a la distancia de la Tierra basta con dividir esta energía por 46,225 resulta:
Intercambios radiativos entre cuerpos negros
El
flujo de calor se obtiene de la siguiente manera:
Para el cálculo de intercambios radiativos de dos cuerpos negros, hay que afectar a la expresión anterior por el llamado
factor de forma F, el cual indica que fracción de la energía total emitida por una superficie es interceptada (absorbida, reflejada o transmitida) por otra superficie, es un concepto puramente geométrico. La expresión final es de la forma:
Hay que tener en cuenta que se cumple
Para superficies reales (con emisividad menor a 1) hay que tener en cuenta que además de emitir, la superficie refleja energía, para ello se define
J como la
radiosidad, que es la suma de la energía emitida y la reflejada.
En el caso particular de un cuerpo negro se cumple que
Ejemplo:
Para una cavidad cerrada compuesta por dos superficies reales, el intercambio radiativo es:
No hay comentarios:
Publicar un comentario