# | Diagrama de Coxeter-Dynkin Schläfli símbolo nombre de Johnson | A k graficas de proyeccion ortogonal |
A 7 [8] | A 6 [7] | A 5 [6] | A 4 [5] | A 3 [4] | A 2 [3] |
1 | t 0 {3,3,3,3,3,3} 7-simplex | | | | | | |
2 | t 1 {3,3,3,3,3,3} Rectificado 7-simplex | | | | | | |
3 | t 2 {3,3,3,3,3,3} Birectified 7-simplex | | | | | | |
4 | t 3 {3,3,3,3,3,3} Trirectified 7-simplex | | | | | | |
5 | t 0,1 {3,3,3,3,3,3} Truncado 7-simplex | | | | | | |
6 | t 0,2 {3,3,3,3,3,3} 7-simplexcantellated
| | | | | | |
7 | t 1,2 {3,3,3,3,3,3} Bitruncado 7-simplex | | | | | | |
8 | t 0,3 {3,3,3,3,3,3} Runcinado 7-simplex | | | | | | |
9 | t 1,3 {3,3,3,3,3,3} Bicantellated 7-simplex | | | | | | |
10 | t 2,3 {3,3,3,3,3,3} tritruncado 7-simplex | | | | | | |
11 | t 0,4 {3,3,3,3,3,3} 7-simplex esterilizado | | | | | | |
12 | t 1,4 {3,3,3,3,3,3} Biruncinado 7-simplex | | | | | | |
13 | t 2,4 {3,3,3,3,3,3} Tricantellated 7-simplex | | | | | | |
14 | t 0,5 {3,3,3,3,3,3} Pentellated 7-simplex | | | | | | |
15 | t 1,5 {3,3,3,3,3,3} 7-simplex bistérico | | | | | | |
dieciséis | t 0,6 {3,3,3,3,3,3} Hexicated 7-simplex | | | | | | |
17 | t 0,1,2 {3,3,3,3,3,3} Cantitruncado 7-simplex | | | | | | |
18 | t 0,1,3 {3,3,3,3,3,3} Runcitruncated 7-simplex | | | | | | |
19 | t 0,2,3 {3,3,3,3,3,3} Runcicantellated 7-simplex | | | | | | |
20 | t 1,2,3 {3,3,3,3,3,3} Bicantitruncated 7-simplex | | | | | | |
21 | t 0,1,4 {3,3,3,3,3,3} 7-simplex esteritruncated | | | | | | |
22 | t 0,2,4 {3,3,3,3,3,3} 7-simplex esterilizados | | | | | | |
23 | t 1,2,4 {3,3,3,3,3,3} Biruncitruncated 7-simplex | | | | | | |
24 | t 0,3,4 {3,3,3,3,3,3} 7-simplex esteriruncinado | | | | | | |
25 | t 1,3,4 {3,3,3,3,3,3} 7-simplex bisuncicantellated | | | | | | |
26 | t 2,3,4 {3,3,3,3,3,3} Tricantitruncated 7-simplex | | | | | | |
27 | t 0,1,5 {3,3,3,3,3,3} Pentitruncado 7-simplex | | | | | | |
28 | t 0,2,5 {3,3,3,3,3,3} Penticantellated 7-simplex | | | | | | |
29 | t 1,2,5 {3,3,3,3,3,3} Bisteritruncado 7-simplex | | | | | | |
30 | t 0,3,5 {3,3,3,3,3,3} Pentiruncinado 7-simplex | | | | | | |
31 | t 1,3,5 {3,3,3,3,3,3} 7-simplex bistericantellated | | | | | | |
32 | t 0,4,5 {3,3,3,3,3,3} Pentistericated 7-simplex | | | | | | |
33 | t 0,1,6 {3,3,3,3,3,3} Hexitruncado 7-simplex | | | | | | |
34 | t 0,2,6 {3,3,3,3,3,3} Hexicantellated 7-simplex | | | | | | |
35 | t 0,3,6 {3,3,3,3,3,3} Hexiruncinado 7-simplex | | | | | | |
36 | t 0,1,2,3 {3,3,3,3,3,3} Runcicantitruncated 7-simplex | | | | | | |
37 | t 0,1,2,4 {3,3,3,3,3,3} estericantitruncated 7-simplex | | | | | | |
38 | t 0,1,3,4 {3,3,3,3,3,3} 7-simplex esteriruncitruncated | | | | | | |
39 | t 0,2,3,4 {3,3,3,3,3,3} 7-simplex esterilizados poresterilización funcional | | | | | | |
40 | t 1,2,3,4 {3,3,3,3,3,3} Biruncicantitruncated 7-simplex | | | | | | |
41 | t 0,1,2,5 {3,3,3,3,3,3} Penticantitruncated 7-simplex | | | | | | |
42 | t 0,1,3,5 {3,3,3,3,3,3} Pentiruncitruncated 7-simplex | | | | | | |
43 | t 0,2,3,5 {3,3,3,3,3,3} Pentiruncicantellated 7-simplex | | | | | | |
44 | t 1,2,3,5 {3,3,3,3,3,3} Bistericantitruncated 7-simplex | | | | | | |
45 | t 0,1,4,5 {3,3,3,3,3,3} Pentisteritruncated 7-simplex | | | | | | |
46 | t 0,2,4,5 {3,3,3,3,3,3} Pentiestericantellated 7-simplex | | | | | | |
47 | t 1,2,4,5 {3,3,3,3,3,3} Bisteriruncitruncated 7-simplex | | | | | | |
48 | t 0,3,4,5 {3,3,3,3,3,3} Pentisteriruncinado 7-simplex | | | | | | |
49 | t 0,1,2,6 {3,3,3,3,3,3} Hexicantitruncated 7-simplex | | | | | | |
50 | t 0,1,3,6 {3,3,3,3,3,3} Hexiruncitruncated 7-simplex | | | | | | |
51 | t 0,2,3,6 {3,3,3,3,3,3} Hexiruncicantellated 7-simplex | | | | | | |
52 | t 0,1,4,6 {3,3,3,3,3,3} Hexisteritruncated 7-simplex | | | | | | |
53 | t 0,2,4,6 {3,3,3,3,3,3} Hexistericantellated 7-simplex | | | | | | |
54 | t 0,1,5,6 {3,3,3,3,3,3} Hexipentitruncated 7-simplex | | | | | | |
55 | t 0,1,2,3,4 {3,3,3,3,3,3} Steriruncicantitruncated 7-simplex | | | | | | |
56 | t 0,1,2,3,5 {3,3,3,3,3,3} Pentiruncicantitruncated 7-simplex | | | | | | |
57 | t 0,1,2,4,5 {3,3,3,3,3,3} Pentistericantitruncated 7-simplex | | | | | | |
58 | t 0,1,3,4,5 {3,3,3,3,3,3} Pentisteriruncitruncated 7-simplex | | | | | | |
59 | t 0,2,3,4,5 {3,3,3,3,3,3} Pentisteriruncicantellated 7-simplex | | | | | | |
60 | t 1,2,3,4,5 {3,3,3,3,3,3} Bisteriruncicantitruncated 7-simplex | | | | | | |
61 | t 0,1,2,3,6 {3,3,3,3,3,3} Hexiruncicantitruncated 7-simplex | | | | | | |
62 | t 0,1,2,4,6 {3,3,3,3,3,3} Hexistericantitruncated 7-simplex | | | | | | |
63 | t 0,1,3,4,6 {3,3,3,3,3,3} Hexisteriruncitruncated 7-simplex | | | | | | |
64 | t 0,2,3,4,6 {3,3,3,3,3,3} Hexisteriruncicantellated 7-simplex | | | | | | |
sesenta y cinco | t 0,1,2,5,6 {3,3,3,3,3,3} Hexipenticantitruncated 7-simplex | | | | | | |
66 | t 0,1,3,5,6 {3,3,3,3,3,3} Hexipentiruncitruncated 7-simplex | | | | | | |
67 | t 0,1,2,3,4,5 {3,3,3,3,3,3} Pentisteriruncicantitruncated 7-simplex | | | | | | |
68 | t 0,1,2,3,4,6 {3,3,3,3,3,3} Hexisteriruncicantitruncated 7-simplex | | | | | | |
69 | t 0,1,2,3,5,6 {3,3,3,3,3,3} Hexipentiruncicantitruncated 7-simplex | | | | | | |
70 | t 0,1,2,4,5,6 {3,3,3,3,3,3} Hexipentistericantitruncated 7-simplex | | | | | | |
71 | t 0,1,2,3,4,5,6 {3,3,3,3,3,3} Omnitruncated 7-simplex | | | | | |
No hay comentarios:
Publicar un comentario