domingo, 3 de enero de 2016

Física

Cinemática



Movimiento de caída de los cuerpos


En este programa se van a estudiar las ecuaciones del movimiento rectilíneo uniformemente acelerado, y en concreto el movimiento de caída de los cuerpos bajo la aceleración de la gravedad.
Si bien, es un tema que se estudia a lo largo de todos los cursos de Física, desde los más elementales, persisten algunas dificultades y en concreto aquellas que confunden la posición del móvil con espacio recorrido.
Se ha de insistir, que las magnitudes cinemáticas tienen carácter vectorial, incluso en el movimiento rectilíneo, y que para describir un movimiento se han de seguir los siguientes pasos:
  1. Establecer el sistema de referencia, es decir, el origen y el eje a lo largo del cual tiene lugar el movimiento
  2. El valor y signo de la aceleración
  3. El valor y el signo de la velocidad inicial
  4. La posición inicial del móvil
  5. Escribir las ecuaciones del movimiento
  6. A partir de los datos, despejar las incógnitas

Descripción

Cine_09.gif (2220 bytes)Un cuerpo es lanzado desde el techo de un edificio de altura x0 con velocidad v0, determinar las ecuaciones del movimiento, la altura máxima y el tiempo que tarda el cuerpo en alcanzar el origen.En primer lugar, establecemos el origen y la dirección del movimiento, el eje X. Después, los valores de la posición inicial y los valores y signos de la velocidad inicial, y de la aceleración, tal como se indica en la figura. Resultando las siguientes ecuaciones del movimiento.
Cuando alcanza la altura máxima, la velocidad del móvil es cero. De la ecuación de la velocidad, se obtiene el tiempo que transcurre desde que se lanza hasta que llega a dicha posición. El tiempo transcurrido se sustituye en la ecuación de la posición, obteniéndose la máxima altura que alcanza el móvil medida desde el suelo.

El tiempo que tarda en llegar al suelo, se obtiene a partir de la ecuación de la posición, poniendo x=0, resolviendo una ecuación de segundo grado.

Nota: como podrá comprobar el lector, la solución del problema es independiente de la situación del origen. Si colocamos el origen en el punto de lanzamiento, la posición inicial x0 es cero, pero el suelo se encuentra en la posición -x0 respecto de dicho origen, resultando la misma ecuación. La altura máxima se calcula ahora desde el techo del edificio, no desde el origen.
cine_17.gif (1034 bytes)Signo de la aceleración:Si el eje X apunta hacia arriba la aceleración de la gravedad vale a=-g,  g=9.8 ó 10 m/s2
cine_16.gif (1065 bytes)Signo de la velocidad inicial:Si el eje X apunta hacia arriba y el cuerpo es inicialmente lanzado hacia arriba el signo de la velocidad inicial es positivo, en caso de ser lanzado hacia abajo el signo es negativo
cine_18.gif (1187 bytes)Situación del origen:Se acostumbra a poner en el origen, en el punto en el que es lanzado el móvil en el instante inicial. Esto no tiene que ser siempre así, si un cuerpo es lanzado desde el techo de un edificio podemos situar el origen en el suelo, la posición inicial del móvil correspondería a la altura del edificio h.
Si situamos el origen en el techo del edificio y lanzamos el móvil desde el suelo, la posición inicial sería -h.



Movimiento de caída libre


x
Torre de experimentación para caída libre de cierta cantidad de átomos, en Bremen, Alemania.
El movimiento de los cuerpos en caída libre (por la acción de su propio peso) es una forma derectilíneo uniformemente acelerado.
La distancia recorrida (d) se mide sobre la vertical y corresponde, por tanto, a una altura que se representa por la letra h.
En el vacío el movimiento de caída es de aceleración constante, siendo dicha aceleración la misma para todos los cuerpos, independientemente de cuales sean su forma y su peso.
La presencia de aire frena ese movimiento de caída y la aceleración pasa a depender entonces de la forma del cuerpo. No obstante, para cuerpos aproximadamente esféricos, la influencia del medio sobre el movimiento puede despreciarse y tratarse, en una primera aproximación, como si fuera decaída libre.
La aceleración en los movimientos de caída libre, conocida como aceleración de la gravedad, se representa por la letra g y toma un valor aproximado de 9,81 m/s2  (algunos usan solo el valor 9,8 o redondean en 10).

Si el movimiento considerado es de descenso o de caída, el valor de g resulta positivo como corresponde a una auténtica aceleración. Si, por el contrario, es de ascenso en vertical el valor deg se considera negativo, pues se trata, en tal caso, de un movimiento decelerado.

Para resolver problemas con movimiento de caída libre utilizamos las siguientes fórmulas:

Caida_libre001
cqaida_libre004
Gota de agua en caída libre.
Algunos datos o consejos para resolver problemas de caída libre:

Recuerda que cuando se informa que “Un objeto se deja caer” la velocidad inicial será siempre igual a cero  (v0 = 0).
En cambio, cuando se informa que “un objeto se lanza” la velocidad inicial será siempre diferente a cero (vo ≠ 0).

Desarrollemos un problema para ejercitarnos
Desde la parte alta de este moderno edificio se deja caer una pelota, si tarda 3 segundos en llegar al piso ¿cuál es la altura del edificio? ¿Con qué velocidad impacta contra el piso?

caida_libre008
Desde lo alto dejamos caer una pelota.
Veamos los datos de que disponemos:
caida_libre002

Para conocer la velocidad final (vf), apliquemos la fórmula
caida_libre003
Ahora, para conocer la altura (h) del edificio, aplicamos la fórmula:
caida_libre004
Respuestas:
La pelota se deja caer desde una altura de 44,15 metros e impacta en el suelo con una velocidad de 29,43 metros por segundo.

x

Movimiento de subida o de tiro vertical

Al igual que la caída libre, este es un movimiento uniformemente acelerado.
Tal como la caída libre, es un movimiento sujeto a la aceleración de la gravedad (g), sólo que ahora la aceleración se opone al movimiento inicial del objeto.
A diferencia de la caída libre, que opera solo de bajada, el tiro vertical comprende subida y bajada de los cuerpos u objetos y posee las siguientes características:
- La velocidad inicial siempre es diferente a cero.
- Mientras el objeto sube, el signo de su velocidad (V) es positivo.
- Su velocidad es cero cuando el objeto  alcanza su altura máxima.
- Cuando comienza a descender, su velocidad será negativa.
- Si el objeto tarda, por ejemplo, 2 s en alcanzar su altura máxima, tardará 2 s en regresar a la posición original, por lo tanto el tiempo que permaneció en el aire el objeto es 4 s.
- Para la misma posición del lanzamiento la velocidad de subida es igual a la velocidad de bajada.
Para resolver problemas con movimiento de subida o tiro vertical  utilizamos las siguientes fórmulas:
caida_libre005

Ver: PSU: Física; Pregunta 10_2005(2)
Para ejercitarnos, resolvamos lo siguiente:
Se lanza verticalmente hacia arriba una pelota con una velocidad inicial de 30 m/s, calcular:
a) Tiempo que tarda en alcanzar su altura máxima.
b) Altura máxima.
c) Posición y velocidad de la pelota a los 2 s de haberse lanzado.
d) Velocidad y posición de la pelota a los 5 s de haber sido lanzada.
e) Tiempo que la pelota estuvo en el aire desde que se lanza hasta que retorna a tierra.
Veamos los datos que tenemos:
caida_libre006
Para conocer el tiempo que demora la pelota en llegar a velocidad cero (altura máxima) utilizamos la fórmula
caida_libre007
La pelota llega a la altura máxima a los 3,06 segundos y como el tiempo de bajada es igual al de subida, este se multiplica por dos para conocer el tiempo total que permanece en el aire (6,12 segundos).
Ahora vamos a calcular la altura máxima, la que alcanza cuando su velocidad final llega a cero:
Aplicamos la fórmula
caida_libre008
La altura máxima que alcanza la pelota hasta detenerse en el aire es de 45,87 metros (desde allí empieza a caer).
Ahora vamos a calcular la velocidad que tuvo cuando habían transcurrido 2 s:
Aplicamos la fórmula, considerando la velocidad como final a los 2 segundos:
caida_libre009
Entonces, la velocidad que llevaba la pelota hacia arriba, a los 2 segundos, fue de 10,38 metros por segundo.
Con este dato, podemos calcular la altura que alcanzó en ese momento (2 segundos).
caida_libre010

A los 2 segundos la pelota alcanzó una altura de 40,38 metros.
Veamos ahora qué sucede cuando han transcurrido 5 segundos:
Podemos calcular su velocidad usando la misma fórmula
caida_libre011
El que obtengamos -19,05 metros por segundo indica que la pelota va cayendo.
También podemos usar la fórmula de caída libre, ya que al llegar a su altura máxima la pelota tiene cero velocidad, pero a los 5 segundos informados debemos restarle los 3,06 segundos durante los que la pelota ha ascendido hasta su altura máxima y desde donde empieza a caer:
Entonces tenemos
5 s – 3,06 s = 1,94 segundo  de caída libre, y su velocidad la dará la fórmula
caida_libre017
Pero ahora la velocidad inicial es cero, entonces
caida_libre012
Ahora podemos calcular la altura a que ha llegado la pelota a los 5 segundos; o sea, cuando va cayendo y lleva una velocidad de 19,03 metros por segundo:
caida_libre013
Transcurridos 5 segundos, la pelota va cayendo y se encuentra a 27, 41 metros de altura.
Una pregunta adicional ¿cuánto ha descendido la pelota desde su altura máxima?
Ya sabemos que la altura máxima fue 45,87 metros, entones a esa altura le restamos los 27,41 metros y resulta que la pelota ha descendido 18,46 metros.
Ejercicio de práctica
Resolvamos ahora el siguiente problema:
Un objeto es eyectado verticalmente y alcanza una altura máxima de 45 m desde el nivel de lanzamiento. Considerando laaceleración de gravedad igual a 10 m/s2 y despreciando efectos debidos al roce con el aire, ¿cuánto tiempo duró el ascenso?
Veamos los datos que tenemos:
caida_libre014
Primero necesitamos calcular (conocer) la velocidad inicial (V0), para ello usamos la fórmula
caida_libre015
Ahora, para conocer el tiempo que demora el objeto en llegar a velocidad cero (altura máxima = 45 m) utilizamos la fórmula
caida_libre016
Respuesta: El objeto demora 3 segundos en llegar a 45 metros de altura máxima.

No hay comentarios:

Publicar un comentario