miércoles, 15 de marzo de 2017

Conceptos de electrónica

tipos de diodos

Algunos tipos de diodos

Diodos PIN

El diodo PIN es un diodo que presenta una región P fuertemente dopada y otra región N también fuertemente dopada, separadas por una región de material que es casi intrínseco. Este tipo de diodos se utiliza en frecuencias de microondas, es decir, frecuencias que exceden de 1 GHz, puesto que incluso en estas frecuencias el diodo tiene una impedancia muy alta cuando está inversamente polarizado y muy baja cuando esta polarizado en sentido directo. Además, las tensiones de ruptura están comprendidas en el margen de 100 a 1000 V.
En virtud de las características del diodo PIN se le puede utilizar como interruptor o como modulador de amplitud en frecuencias de microondas ya que para todos los propósitos se le puede presentar como un cortocircuito en sentido directo y como un circuito abierto en sentido inverso. También se le puede utilizar para conmutar corrientes muy intensas y/o tensiones muy grandes.
El diodo se forma partiendo de silicio tipo P de alta resistividad. La capa P de baja resistividad representada, está esta formada por difusión de átomos de boro en un bloque de silicio tipo P y la capa N muy delgada está formada difundiendo grandes cantidades de fósforo. La región intrínseca i es realmente una región P de alta resistividad y se suele denominar región p. Cuando el circuito está abierto, los electrones fluyen desde la región i(p) hasta la región P para recombinarse con los huecos en exceso, y los huecos fluyen desde la región i para recombinarse con los electrones de la región N. Si el material i(p) fuese verdaderamente intrínseco, la caída de tensión en la región i sería nula, puesto que la emigración de huecos sería igual a la emigración de electrones. Si embargo, como el material es en verdad p (P de alta resistividad), hay mas huecos disponibles que electrones.
Cuando se aplica una polarización inversa al diodo los electrones y los huecos del material p son barridos (swept free). Un posterior aumento de la tensión inversa simplemente incrementa las distribuciones de tensiones P-I e I-N. En el diodo PIN la longitud de la región de transición L es aproximadamente igual a la región i y aproximadamente independiente de la tensión inversa. Por lo tanto, a diferencia de los diodos PN o Schottky, el diodo PIN tiene una capacidad inversa que es aproximadamente constante, independiente de la polarización. Una variación típica de la capacidad podría ser desde 0,15 hasta 0,14 pF en una variación de la polarización inversa de, por ejemplo, 100 V. En virtud de que es igual a la longitud de la región i, la longitud de la región de transición es aproximadamente constante y considerablemente mayor que la de otros diodos y, por lo tanto, la capacidad CR, que es proporcional a 1/L es significativamente menor que la de otros diodos, por lo que el diodo PIN es apropiado para aplicaciones de microondas. Los valores normales de CR varían desde 0,1 pF hasta 4 pF en los diodos PIN, comercialmente asequibles.
Cuando el diodo está polarizado en sentido directo, los huecos del material P se difunden el la región p, creando una capa P de baja resistividad. La corriente es debida al flujo de los electrones y de los huecos cuyas concentraciones son aproximadamente iguales en la región i. En la condición de polarización directa la caída de tensión en la región i es muy pequeña. Además, al igual que el diodo PN, cuando aumenta la corriente, también disminuye la resistencia. En consecuencia el diodo PIN es un dispositivo con su resistencia o conductancia modulada. En una primera aproximación, la resistencia rd en pequeña señal es inversamente proporcional a la corriente IDQ con polarización directa, lo mismo que en el diodo PN.
En frecuencias de microondas se representa de maneras mas sencillas por una capacidad CR en serie con la resistencia directa rd. Con tensiones directas, CR es aproximadamente infinita, mientras que en polarización inversa, rd es aproximadamente nula. La capacidad CS es la capacidad parásita paralelo que se produce soldando el diodo a la cápsula y LS es la inductancia serie debida a los hilos de conexión desde el diodo hasta la cápsula.

Diodos Varactores (Varicap)

Los diodos varactores [llamados también varicap (diodo con capacitancia-voltaje variable) o sintonizadores] son semiconductores dependientes del voltaje, capacitores variables. Su modo de operación depende de la capacitancia que existe en la unión P-N cuando el elemento está polarizado inversamente. En condiciones de polarización inversa, se estableció que hay una región sin carga en cualquiera de los lados de la unión que en conjunto forman la región de agotamiento y definen su ancho Wd. La capacitancia de transición (CT) establecida por la región sin carga se determina mediante:
CT = E (A/Wd)
donde E es la permitibilidad de los materiales semiconductores, A es el área de la unión P-N y Wd el ancho de la región de agotamiento.
Conforme aumenta el potencial de polarización inversa, se incrementa el ancho de la región de agotamiento, lo que a su vez reduce la capacitancia de transición. El pico inicial declina en CT con el aumento de la polarización inversa. El intervalo normal de VR para diodos varicap se limita aproximadamente 20V. En términos de la polarización inversa aplicada, la capacitancia de transición se determina en forma aproximada mediante:
CT = K / (VT + VR)n
donde:
K = constante determinada por el material semiconductor y la técnica de construcción.
VT = potencial en la curva según se definió en la sección
VR = magnitud del potencial de polarización inversa aplicado
n = ½ para uniones de aleación y 1/3 para uniones de difusión

El diodo túnel

En 1958, el físico japonés Esaki, descubrió que los diodos semiconductores obtenidos con un grado de contaminación del material básico mucho mas elevado que lo habitual exhiben una característica tensión-corriente muy particular. La corriente comienza por aumentar de modo casi proporcional a la tensión aplicada hasta alcanzar un valor máximo, denominado corriente de cresta. A partir de este punto, si se sigue aumentando la tensión aplicada, la corriente comienza a disminuir y lo siga haciendo hasta alcanzar un mínimo, llamado corriente de valle, desde el cual de nuevo aumenta. El nuevo crecimiento de la corriente es al principio lento, pero luego se hace cada vez mas rápido hasta llegar a destruir el diodo si no se lo limita de alguna manera. Este comportamiento particular de los diodos muy contaminados se debe a lo que los físicos denominan efecto túnel, del que no nos ocuparemos aquí debido a su complejidad. Para las aplicaciones prácticas del diodo túnel, la parte mas interesante de su curva característica es la comprendida entre la cresta y el valle. En esta parte de la curva a un aumento de la tensión aplicada corresponde una disminución de la corriente; en otros términos, la relación entre un incremento de la tensión y el incremento resultante de la corriente es negativa y se dice entonces que esta parte de la curva representa una "resistencia incremental negativa". Una resistencia negativa puede compensar total o parcialmente una resistencia positiva. Así, por ejemplo, las pérdidas que se producen en un circuito resonante a causa de la presencia siempre inevitable de cierta resistencia en el, se compensa asociando al circuito una resistencia negativa de valor numérico conveniente y realizada por ejemplo, mediante un diodo túnel. En tal caso el circuito oscilante se transforma en un oscilador. Los ejemplo de circuito que se describen a continuación muestra como puede aprovecharse este fenómeno en la práctica.

Diodo de contacto puntual

El rectificador de contacto puntual consiste en un semiconductor sobre el que descansa la punta de un alambre delgado.
La curva de corriente versus voltaje es cualitativamente similar a la del diodo de unión. Sin embargo, para un voltaje positivo dado, el diodo de contacto puntual conduce algo mas de corriente. Más aún, conforme el voltaje negativo aumenta, la corriente inversa tiende a aumentar mas bien que permanecer aproximadamente constante. La marca inflexión en la curva del diodo de unión en -V» no ocurre en los diodos de contacto puntual, dado que el calentamiento de tal punto ocurre a voltajes mucho mas bajos y produce un aumento gradual de la conductancia en la dirección negativa.


Tipos de diodos

TIPOS DE DIODOS.
DIODO DETECTOR O DE BAJA SEÑAL
   
Los diodos detectores también denominados diodos de señal o de contacto puntual, están hechos de germanio y se caracterizan por poseer una unión PN muy diminuta. Esto le permite operar a muy altas frecuencias y con señales pequeñas. Se emplea por ejemplo, en receptores de radio para separar la componente de alta frecuencia (portadora) de la componente de baja frecuencia (información audible). Esta operación se denomina detección.

 

DIODO RECTIFICADOR
Los diodos rectificadores son aquellos dispositivos semiconductores que solo conducen en
polarización directa (arriba de 0.7 V) y en polarización inversa no conducen. Estas características
son las que permite a este tipo de diodo rectificar una señal.
Los hay de varias capacidades en cuanto al manejo de corriente y el voltaje en inverso que
pueden soportar.

Los diodos, en general se identifican mediante una referencia. En el sistema americano, la
referencia consta del prefijo “1N” seguido del número de serie, por ejemplo: 1N4004. La “N”
significa que se trata de un semiconductor, el “1” indica el número de uniones PN y el “4004” las
características o especificaciones exactas del dispositivo. En el sistema europeo o continental se
emplea el prefijo de dos letras, por ejemplo: BY254. En este caso, la “B” indica el material (silicio) y
la “Y” el tipo (rectificador). Sin embargo muchos fabricantes emplean sus propias referencias, por
ejemplo: ECG581.


DIODO ZÉNER
Un diodo zener es un semiconductor que se distingue por su capacidad de mantener un
voltaje constante en sus terminales cuando se encuentran polarizados inversamente, y por ello se
emplean como elementos de control, se les encuentra con capacidad de ½ watt hasta 50 watt y
para tensiones de 2.4 voltios hasta 200 voltios.
El diodo zener polarizado directamente se comporta como un diodo normal, su voltaje
permanece cerca de 0.6 a 0.7 V.


Los diodos zener se identifican por una referencia, como por ejemplo: 1N3828 ó BZX85, y
se especifican principalmente por su voltaje zener nominal (VZ) y la potencia máxima que pueden
absorber en forma segura sin destruirse (PZ)

DIODO VARACTOR
El diodo varactor también conocido como diodo varicap o diodo de sintonía. Es un
dispositivo semiconductor que trabaja polarizado inversamente y actúan como condensadores
variables controlados por voltaje. Esta característica los hace muy útiles como elementos de
sintonía en receptores de radio y televisión. Son también muy empleados en osciladores,
multiplicadores, amplificadores, generadores de FM y otros circuitos de alta frecuencia. Una
variante de los mismos son los diodos SNAP, empleados en aplicaciones de UHF y microondas.


DIODO EMISOR DE LUZ (LED’s)
Es un diodo que entrega luz al aplicársele un determinado voltaje. Cuando esto sucede,
ocurre una recombinación de huecos y electrones cerca de la unión NP; si este se ha polarizado
directamente la luz que emiten puede ser roja, ámbar, amarilla, verde o azul dependiendo de su
composición.

Los LED’s se especifican por el color o longitud de onda de la luz emitida, la caída de
voltaje directa (VF), el máximo voltaje inverso (VR), la máxima corriente directa (IF) y la intensidad
luminosa. Típicamente VF es del orden de 4 V a 5 V. Se consiguen LED’s con valores de IF desde
menos de 20 mA hasta más de 100 mA e intensidades desde menos de 0.5 mcd (milicandelas)
hasta más de 4000 mcd. Entre mayor sea la corriente aplicada, mayor es el brillo, y viceversa. El
valor de VF depende del color, siendo mínimo para LED’s rojos y máximo para LED’s azules.
Los LED’s deben ser protegidos mediante una resistencia en serie, para limitar la corriente
a través de este a un valor seguro, inferior a la IF máxima.
También deben protegerse contra voltajes inversos excesivos. Un voltaje inverso superior a
5V causa generalmente su destrucción inmediata del LED.





DIODO LÁSER
Los diodos láser, también conocidos como láseres de inyección o ILD’s. Son LED’s que
emiten una luz monocromática, generalmente roja o infrarroja, fuertemente concentrada, enfocada,
coherente y potente. Son muy utilizados en computadoras y sistemas de audio y video para leer
discos compactos (CD’s) que contienen datos, música, películas, etc., así como en sistemas de
comunicaciones para enviar información a través de cables de fibra óptica. También se emplean en
marcadores luminosos, lectores de códigos de barras y otras muchas aplicaciones.




DIODO ESTABILIZADOR
Está formados por varios diodos en serie, cada uno de ellos produce una caída de tensión correspondiente a su tensión umbral.
Trabajan en polarización directa y estabilizan tensiones de bajo valores similares a lo que hacen los diodos Zéner.




DIODO TÚNEL
Los diodos túnel, también conocidos como diodos Esaki. Se caracterizan por poseer una
zona de agotamiento extremadamente delgada y tener en su curva una región de resistencia
negativa donde la corriente disminuye a medida que aumenta el voltaje. Esta última propiedad los
hace muy útiles como detectores, amplificadores, osciladores, multiplicadores, interruptores, etc.,
en aplicaciones de alta frecuencia.


DIODO PIN
Su nombre deriva de su formación P(material P), I(zona intrínseca)y N(material N)
 Los diodos PIN se emplean principalmente como
resistencias variables por voltaje y los diodos Gunn e IMPATT como osciladores. También se
disponen de diodos TRAPATT, BARITT, ILSA, etc.
Son dispositivos desarrollados para trabajar a frecuencias muy
elevadas, donde la capacidad de respuesta de los diodos comunes está limitada por su tiempo de
tránsito, es decir el tiempo que tardan los portadores de carga en atravesar la unión PN. Los más
conocidos son los diodos Gunn, PIN e IMPATT.


DIODO BACKWARD
Son diodos de germanio que presentan en polarización inversa una zona de resistencia negativa similar a las de los diodos túnel.


DIODO SCHOTTKY
Los diodos Schottky también llamados diodos de recuperación rápida o de portadores
calientes, están hechos de silicio y se caracterizan por poseer una caída de voltaje directa muy
pequeña, del orden de 0.25 V o menos, y ser muy rápidos. Se emplean en fuentes de potencia,
sistemas digitales y equipos de alta frecuencia.


Una variante son los diodos back o de retroceso, los cuales tienen un voltaje de
conducción prácticamente igual a cero, pero también un voltaje inverso de ruptura muy bajo, lo cual
lo limita su uso a aplicaciones muy especiales.

FOTODIODOS
Los fotodiodos son diodos provistos de una ventana transparente cuya corriente inversa
puede ser controlada en un amplio rango regulando la cantidad de luz que pasa por la ventana e
incide sobre la unión PN. A mayor cantidad de luz incidente, mayor es la corriente inversa
producida por que se genera un mayor número de portadores minoritarios, y viceversa. Son muy
utilizados como sensores de luz en fotografía, sistemas de iluminación, contadores de objetos,
sistemas de seguridad, receptores de comunicaciones ópticas y otras aplicaciones.


No hay comentarios:

Publicar un comentario