viernes, 17 de marzo de 2017

Estudios y ejercicios de Física aplicada

Ejemplos de análisis dimensional

1 Enunciado

A partir de las relaciones definitorias
VelocidadCantidad de movimientoAceleraciónFuerza
\vec{v}=\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}\vec{p}=m\vec{v}\vec{a}=\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}\vec{F}=\frac{\mathrm{d}\vec{p}}{\mathrm{d}t}
TrabajoPotenciaMomento cinéticoMomento de una fuerza
W=\int_A^B\vec{F}\cdot\mathrm{d}\vec{r}P=\frac{\mathrm{d}W}{\mathrm{d}t}\vec{L}=\vec{r}\times\vec{p}\vec{M}=\vec{r}\times\vec{F}
determine las ecuaciones dimensionales de estas magnitudes, así como sus unidades en el SI en función de las unidades básicas de este sistema.

2 Velocidad

La velocidad se define como la derivada de la posición respecto al tiempo. Una derivada no es más que un cociente entre dos cantidades muy pequeñas y por tanto sus dimensiones serán las del numerador divididas por las del denominador, esto es,
[v] = \frac{[r]}{[t]} = L T^{-1}
La unidad en el SI de velocidad es 1 m/s.

3 Cantidad de movimiento

La cantidad de movimiento es el producto de la masa por la velocidad, por lo que sus dimensiones serán las del producto de estas dos cantidades:
[p]= [m][v]= MLT^{-1}\,
La unidad SI de la cantidad de movimiento es 1 kg·m/s.

4 Aceleración

La aceleración es la derivada de la velocidad respecto al tiempo, por tanto
[a] = \frac{[v]}{[t]} = \frac{LT^{-1}}{T}=LT^{-2}
La unidad de aceleración en el SI será 1 m/s².

5 Fuerza

La fuerza se define como la derivada de la cantidad de movimiento con respecto al tiempo (aunque también suele expresarse como el producto de la masa por la aceleración). Por ello
[F] = \frac{[p]}{[t]} = \frac{MLT^{-1}}{T}=MLT^{-2}
La unidad SI de la fuerza es el newton, que equivale a
1\,\mathrm{N} = \,\frac{\mathrm{kg}\cdot\mathrm{m}}{\mathrm{s}^2}

6 Trabajo

El trabajo se define a partir de una integral, esto es, una suma de muchas cantidades muy pequeñas. Las dimensiones de la integral son entonces las mismas que las de cada uno de los sumandos. Cada sumando es un trabajo diferencial, igual al producto escalar de una fuerza por un desplazamiento. Por ello
[W]= [F][r] = (MLT^{-2})(L) = ML^2T^{-2}\,
Vemos que el trabajo posee dimensiones de masa por velocidad al cuadrado, que son las mismas de la energía cinética
K = \frac{1}{2}mv^2   \Rightarrow   [K] = [m][v]^2 = M(LT^{-1})^2 = ML^2T^{-2}\,
La unidad de trabajo en el sistema internacional es el julio, equivalente a
1\,\mathrm{J}=1\,\mathrm{N}\cdot\mathrm{m}=1\,\frac{\mathrm{kg}\cdot\mathrm{m}^2}{\mathrm{s}^2}

7 Potencia

La potencia es el cociente entre un trabajo diferencial y el tiempo diferencial en que se realiza. Las dimensiones las da también el cociente
[P]=\frac{[W]}{[t]}=\frac{ML^2T^{-2}}{T}=ML^2T^{-3}
La unidad SI de potencia es el vatio, que equivale a
1\,\mathrm{W}=1\,\frac{\mathrm{J}}{\mathrm{s}} = 1\,\frac{\mathrm{kg}\cdot\mathrm{m}^2}{\mathrm{s}^3}

8 Momento cinético

El momento cinético es el producto vectorial de la posición por la cantidad de movimiento. Todo producto (de escalares, escalar, vectorial,…) tiene dimensiones del producto de las magnitudes, esto es,
[L]=[r][p] = L(MLT^{-1}) = ML^2T^{-1}\,
La unidad de momento cinético en el SI será 1 kg·m²/s.

9 Momento de una fuerza

Por último, el momento de una fuerza equivale al producto vectorial de un vector de posición (con dimensiones de distancia) y una fuerza
[M] = [r][F] = (L)(MLT^{-2}) = ML^2T^{-2}\,
La unidad de momento en el SI es el newton por metro
1\,\mathrm{N}\cdot\mathrm{m}=1\,\frac{\mathrm{kg}\cdot\mathrm{m}^2}{\mathrm{s}^2}
Aunque esta unidad es equivalente a un julio, no se utiliza 1 J como unidad de momento de una fuerza, debido a que esta magnitud no representa trabajo, calor o energía, cantidades para las que se reserva el uso del julio.

El análisis dimensional es una herramienta que permite simplificar el estudio de cualquier fenómeno en el que estén involucradas muchas magnitudes físicas en forma de variables independientes. Su resultado fundamental, el teorema π de Vaschy-Buckingham (más conocido por teorema π) permite cambiar el conjunto original de parámetros de entrada dimensionales de un problema físico por otro conjunto de parámetros de entrada adimensionales más reducido. Estos parámetros adimensionales se obtienen mediante combinaciones adecuadas de los parámetros dimensionales y no son únicos, aunque sí lo es el número mínimo necesario para estudiar cada sistema. De este modo, al obtener uno de estos conjuntos de tamaño mínimo se consigue:
  • Analizar con mayor facilidad el sistema objeto de estudio
  • Reducir drásticamente el número de ensayos que debe realizarse para averiguar el comportamiento o respuesta del sistema.
El análisis dimensional es la base de los ensayos con maquetas a escala reducida utilizados en muchas ramas de la ingeniería, tales como la aeronáutica, la automoción o la ingeniería civil. A partir de dichos ensayos se obtiene información sobre lo que ocurre en el fenómeno a escala real cuando existe semejanza física entre el fenómeno real y el ensayo, gracias a que los resultados obtenidos en una maqueta a escala son válidos para el modelo a tamaño real si los números adimensionales que se toman como variables independientes para la experimentación tienen el mismo valor en la maqueta y en el modelo real. Así, para este tipo de cálculos, se utilizan ecuaciones dimensionales, que son expresiones algebraicas que tienen como variables a las unidades fundamentales y derivadas, las cuales se usan para demostrar fórmulas, equivalencias o para dar unidades a una respuesta.
Finalmente, el análisis dimensional también es una herramienta útil para detectar errores en los cálculos científicos e ingenieriles. Con este fin se comprueba la congruencia de las unidades empleadas en los cálculos, prestando especial atención a las unidades de los resultados.



Flujo de líquido por una tubería

1 Enunciado

Por el interior de una tubería cilíndrica de radio a fluye un líquido con una velocidad, dependiente de la distancia al eje, ρ, como
\mathbf{v} = v_0\left(1-\frac{\rho^2}{a^2}\right)\mathbf{u}_{z}
El líquido posee una densidad de carga uniforme ρ0, de forma que la densidad de corriente es \mathbf{J} = \rho_0\mathbf{v}. En el exterior del tubo no hay corriente.
  1. Calcule la intensidad de corriente que atraviesa una sección por la tubería.
  2. Si se desea que por la superficie del tubo circule una corriente superficial \mathbf{K}, de forma que la corriente total sea nula, ¿cuánto debe valer \mathbf{K}?

2 Intensidad de corriente

La intensidad de corriente es igual al flujo de la densidad de corriente a través de una superficie abierta atravesada por ésta. En este sistema la superficie más adecuada es una sección circular de la tubería, perpendicular a su eje.
En coordenadas cilíndricas esta superficie es z = z0 = cte, lo que nos da la intensidad
I = \int_S \mathbf{J}\cdot\mathrm{d}\mathbf{S} = \int_0^{2\pi}\int_0^a \left(v_0\left(1-\frac{\rho^2}{a^2}\right)\mathbf{u}_{z}\right)\cdot\left(\rho\,\mathrm{d}\rho\,\mathrm{d}\varphi\,\mathbf{u}_z\right)
El producto escalar vale la unidad, pues la corriente y el vector normal a la superficie son vectores paralelos. La integral en \varphi nos da un factor , mientras que la integral en ρ es una polinómica. La corriente vale entonces
I = 2\pi\rho_0v_0 \int_0^a \left(\rho-\frac{\rho^3}{a^2}\right)\,\mathrm{d}\rho = \frac{\pi\rho_0v_0a^2}{2}

3 Corriente superficial

Si existe una corriente de retorno uniforme
\mathbf{K}=K_0\mathbf{u}_z\,
sobre la superficie del tubo, la intensidad de corriente asociada a esta densidad es
I_1 = \int_\Gamma \mathbf{K}\cdot\mathbf{n}_1\,\mathrm{d}l
siendo Γ una curva atravesada por la corriente superficial y \mathbf{n}_1 un vector unitario normal a la curva Γ y tangente a la superficie por la que fluye la corriente. En nuestro caso lo más simple es tomar Γ como una circunferencia que corta al tubo (el borde del círculo que hemos considerado antes con la corriente de volumen). Para esta curva
\mathrm{d}l = \rho\,\mathrm{d}\varphi=a\,\mathrm{d}\varphi        \mathbf{n}_1=\mathbf{u}_z\,
y nos queda una intensidad de corriente sobre la superficie
I_1 = \int_0^{2\pi}\left(K_0\,\mathbf{u}_z\right)\cdot\left(\mathbf{u}_z\,a\,\mathrm{d}\varphi\right) = 2\pi a K_0
Si esta corriente debe cancelar la que fluye por el interior de la tubería, su valor debe ser
I_1 = -I\,   \Rightarrow   2\pi a K_0 = -\frac{\pi\rho_0v_0a^2}{2}   \Rightarrow   \mathbf{K} = -\frac{\rho_0v_0a}{4}\,\mathbf{u}_z
Esta corriente, por supuesto, fluye en sentido opuesto a la que va el interior de la tubería.

http://laplace.us.es/wiki/index.php

No hay comentarios:

Publicar un comentario