martes, 2 de mayo de 2017

Geometría elemental


 sistema de coordenadas es un sistema que utiliza uno o más números (coordenadas) para determinar unívocamente la posición de un punto o de otro objeto geométrico.1 El orden en que se escriben las coordenadas es significativo y a veces se las identifica por su posición en una tupla ordenada; también se las puede representar con letras, como por ejemplo «la coordenada-x». El estudio de los sistemas de coordenadas es objeto de la geometría analítica, permite formular los problemas geométricos de forma "numérica".2
Un ejemplo corriente es el sistema que asigna longitud y latitud para localizar coordenadas geográficas. En física, un sistema de coordenadas para describir puntos en el espacio recibe el nombre de sistema de referencia.
3D coordinate system.svg

Ejemplos de sistemas de coordenadas

Sistema de coordenadas cartesianas

Coordenadas cartesianas.
En un espacio euclídeo un sistema de coordenadas cartesianas se define por dos o tres ejes ortogonales igualmente escalados, dependiendo de si es un sistema bidimensional o tridimensional (análogamente en  se pueden definir sistemas n-dimensionales). El valor de cada una de las coordenadas de un punto (A) es igual a la proyección ortogonal del vector de posición de dicho punto () sobre un eje determinado:
Cada uno de los ejes está definido por un vector director y por el origen de coordenadas. Por ejemplo, el eje x está definido por el origen de coordenadas (O) y un vector () tal que:
, cuyo módulo es .
El valor de la coordenada x de un punto es igual a la proyección ortogonal del vector de posición de dicho punto sobre el eje x.

Sistema de coordenadas polares

Localización de un punto en coordenadas polares.
El sistema de coordenadas polares es un sistema de coordenadas bidimensional en el cual cada punto o posición del plano se determina por un ángulo y una distancia.

Sistema de coordenadas cilíndricas

Significado de las coordenadas cilíndricas.
El sistema de coordenadas cilíndricas  se usa para representar los puntos de un espacio euclídeo tridimensional. Resulta especialmente útil en problemas con simetría axial. Este sistema de coordenadas es una generalización del sistema de coordenadas polares del plano euclídeo, al que se añade un tercer eje de referencia ortogonal a los otros dos. La primera coordenada es la distancia existente entre el eje Z y el punto, la segunda es el ángulo que forman el eje X y la recta que pasa por ambos puntos, mientras que la tercera es la coordenada z que determina la altura del cilindro.

Sistema de coordenadas esféricas

Cordonnees spheriques.png
Al igual que las coordenadas cilíndricas, el sistema de coordenadas esféricas se usan en espacios euclidianos tridimensionales. Este sistema de coordenadas esféricas está formado por tres ejes mutuamente ortogonales que se cortan en el origen. La primera coordenada es la distancia entre el origen y el punto, siendo las otras dos los ángulos que es necesario girar para alcanzar la posición del punto.

Coordenadas geográficas

Geographical1.png
Este tipo de coordenadas cartográficas, subtipo de las coordenadas esféricas, se usa para definir puntos sobre una superficie esférica. Hay varios tipos de coordenadas geográficas. El sistema más clásico y conocido es el que emplea la latitud y la longitud, que pueden mostrase en los siguientes formatos:
  • DD --- Decimal Degree (Grados Polares): ej. 49.500-123.500
  • DM --- Degree:Minute (Grados:Minutos): ej. 49:30.0-123:30.0
  • DMS -- Degree:Minute:Second (Grados:Minutos:Segundos): ej. 49:30:00-123:30:00
También se puede definir las coordenadas de un punto de la superficie de la Tierra, utilizando una proyección cartográfica. El sistema de coordenadas cartográficas proyectadas más habitual es el sistema de coordenadas UTM.

Coordenadas curvilíneas generales

Un sistema de coordenadas curvilíneos es la forma más general de parametrizar o etiquetar los puntos de un espacio localmente euclídeo o variedad diferenciable (globalmente el espacio puede ser euclídeo pero no necesariamente). Si tenemos un espacio localmente euclídeo M de dimensión m, podemos construir un sistema de coordenadas curvilíneo local en torno a un punto p siempre a partir de cualquier difeomorfismo que cumpla:

Para cualquier punto q cercano a p se definen sus coordenadas curvilíneas:

Si el espacio localmente euclídeo tiene la estructura de variedad de Riemann se pueden clasificar a ciertos sistemas de coordenadas curvilíneas en sistema de coordenadas ortogonales y cuando es sistema de coordenadas ortonormales. Las coordenadas cilíndricas y las coordenadas esféricas son casos particulares de sistemas de coordenadas ortogonales sobre el espacio euclídeo .

Coordenadas curvilíneas ortogonales

Un sistema de coordenadas curvilíneas se llama ortogonal cuando el tensor métrico expresado en esas coordenadas tiene una forma diagonal. Cuando eso sucede muchas de las fórmulas del cálculo vectorial diferencial se pueden escribir de forma particularmente simple en esas coordenadas, pudiéndose aprovechar ese hecho cuando existe por ejemplo simetría axialesférica o de otro tipo fácilmente representable en esas coordenadas curvilíneas ortogonales.
Las coordenadas esféricas y cilíndricas son casos particulares de coordenadas curvilíneas ortogonales.

Cambios de coordenadas

En la resolución de problemas físicos y matemáticos es común la estrategia del cambio de coordenadas. En esencia un cambio de coordenadas supone cambiar las variables de las que a depende el problema, a otras coordenadas diferentes en las que el problema puede tener una forma equivalente pero más simple, que permite encontrar la solución con mayor facilidad.
Más formalmente un cambio de coordenadas puede representarse por un difeomorfismo o aplicación biyectiva y diferenciable (con inversa también diferenciable) entre dos conjuntos de , aquí llamados  y :
Este cambio de variable permite por ejemplo reescribir integrales del siguiente modo:
Donde:
 representa la función que pretende integrarse expresada en las viejas y las nuevas coordenadas.
 es el jacobiano del cambio de coordenadas.
 es el dominio de integración expresado en las viejas y las nuevas coordenadas.
Para transformar o reescribir ecuaciones diferenciales en términos de las nuevas coordenadas se usan las leyes de transformación tensorial:

Origen de coordenadas

Origen de un sistema bidimensional de coordenadas cartesianas.
El origen de coordenadas es el punto de referencia de un sistema de coordenadas. En este punto, el valor de todas las coordenadas del sistema es nulo. Sin embargo, en algunos sistemas de coordenadas no es necesario establecer nulas todas las coordenadas. Por ejemplo, en un sistema de coordenadas esféricas es suficiente con establecer el radio nulo (), siendo indiferentes los valores de latitud y longitud.
En un sistema de coordenadas cartesianas, el origen es el punto en que los ejes del sistema se separan.



Sistema de Coordenadas:Conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un punto denominado origen. El conjunto de ejes, puntos o planos que confluyen en el origen y a partir de los cuales se calculan las coordenadas de cualquier punto constituyen lo que se denomina sistema de referencia.
Tipos.
Sistema de coordenadas cartesianas.
Formado por dos ejes en el plano, tres en el espacio, mutuamente perpendiculares que se cortan en el origen. Las coordenadas de un punto cualquiera vendrán dadas por las proyecciones de la distancia entre el punto y el origen sobre cada uno de los ejes.
Sistema de coordenadas polares.
Sistema de referencia constituido por un eje que pasa por el origen. La primera coordenada es la distancia existente entre el origen y el punto, mientras que la segunda es el ángulo que forman el eje y la recta que pasa por ambos puntos.
Coordenadas cilíndricas.
Generalización del sistema de coordenadas polares plano, al que se añade un tercer eje de referencia perpendicular a los otros dos.
Coordenadas esféricas.
Sistema de coordenadas formado por dos ejes mutuamente perpendiculares que se cortan en el origen. La primera coordenada es la distancia entre el origen y el punto, siendo las otras dos, los ángulos que es necesario girar sucesivamente, en planos mutuamente perpendiculares, el eje inicial para alcanzar la posición del punto.










Una superficie es de hecho un conjunto de puntos de un espacio euclídeo que forma un espacio topológico bidimensional que localmente, es decir, visto de cerca se parece al espacio euclídeo bidimensional. Así alrededor de cada punto de una superficie esta se aproxima lo suficiente por el plano tangente a la superficie en dicho punto.
Una definición tradicional de superficie que alude a términos intuitivos pero con la que resulta fácil trabajar desde un punto de vista matemático fue la dada por Euclides:
Una superficie es aquello que sólo tiene longitud y anchura.

Definiciones formales

Una superficie es una variedad bidimensional, es decir, un objeto topológico que localmente "se parece" al plano euclídeo  (localmente homeomorfo al plano). Eso significa que si tomamos un área muy pequeña de la superficie es parecida al plano euclídeo.
Más formalmente el homeomorfismo local entre una superficie y el plano euclídeo implica que para cada punto de una superficie hay una vecindad de P (una pequeña región que la rodea) que es homeomorfa a un disco abierto de . Esta propiedad de ser homeomorfa con el plano permite construir un sistema de coordenadas local bidimensional en torno a cualquier punto en la superficie. Se puede llamar al homeomorfismo local que va de la superficie a  como carta y al inverso (de este homeomorfismo) parametrización. No siempre es posible parametrizar una superficie con un único homeomorfismo local.
Una superficie (topológica) con frontera es un espacio topológico de tipo Hausdorff en que cada punto tiene una vecindad abierta V para la que existe un homeomorfismo φ con un conjunto abierto del semiplano superior del plano euclídeo . El par ordenado (V, φ) se llama carta (local) de coordenadas del punto [esta carta no es única porque para cada punto existen de hecho muchas posibles elecciones de coordenadas].

Propiedades y tipos de superficies

Las superficies usuales son versiones curvadas del plano, de hecho son localmente homeomorfas a él. No es extraño por tanto que varios tipos de superficies interesantes en las aplicaciones, se definan a partir de propiedades de curvatura respecto al plano euclídeo o en términos de isometrías. Además otros conceptos topológicos interesantes como la orientabilidad permiten expresar formalmente ciertas propiedades de las superficies.

Superficies cerradas

Un ejemplo de una superficie cerrada y múltiplemente conexa es el triple toro.
Intuitivamente una superfice cerrada en el espacio tridimensional es cualquier superfice que encierra un volumen, dividiendo a dicho espacio en una región "acotada" y una región "no acotada". En 4 o más dimensiones también existen superficies cerradas pero la noción intuitiva anterior no es válida, ya que las superficies cerradas en más dimensiones no dividen al espacio de esta forma.
  • Puede comprobarse que en tres dimensiones una superficie sin borde encierra un volumen, como por ejemplo la esfera y el toro o "donut", estas superficies son además superficies orientables. De hecho todas las superficies cerradas inmersas en el espacio tridimensional son orientables, a diferencia de lo que ocurre en más dimensiones.
  • Otras superficies cerradas más exóticas son el plano proyectivo y la botella de Klein (definible en 4 dimensiones).
  • Un disco (en ), un cilindro de altura finita o la banda de Möbius son ejemplos de superficies con frontera. Como la imagen de la derecha.

Superficies desarrollables, regladas y alabeadas

Algunas superficies tienen propiedades interesantes que son expresables en términos de su curvatura, estos tipos son las superficies desarrollables, regladas y alabeadas:
  • Intuitivamente una superficie es desarrollable si puede fabricarse a partir de un plano euclídeo mediante "doblado". El cono y el cilindro son desarrollables, lo cual se manifiesta en que se pueden construir modelos apropiados a partir de una hoja de papel o cartulina plana. Formalmente dada una superficie desarrollable existe una isometría entre la superficie y el plano euclídeo. Una condición necesaria y suficiente para que una superficie se desarrollable, se desprende del theorema egregium de Gauss, es que la curvatura gaussiana de dicha superficie sea idénticamente nula.
  • Una superficie es reglada cuando el plano tangente para cada punto de la misma contiene una línea recta completamente contenida sobre la superficie. Una condición necesaria es que la segunda forma fundamental sea en ese punto una forma cuadrática indefinida y por tanto la curvatura gaussiana es negativa.
  • Una superficie alabeada es una superficie reglada y no-desarrollable.

Superficies orientables

La banda de Möbius es una superficie no-orientable con una frontera (su frontera es una curva cerrada simple).
Una última propiedad menos intutiva es la de orientabilidad, que permite distinguir entre superficies orientables y no-orientables. Una superficie orientable puede definirse simplemente como una variedad orientable de dimensión dos, donde toda curva cerrada simple contenida tiene una vecindad regular homeomorfa a un cilindro abierto. Cualquier variedad de dimensión dos que no es orientable es una superficie no-orientable. Esto es, existe al menos una curva cerrada simple contenida que tiene una vecindad regular homeomorfa a una banda de Möbius.
Las superficies orientables cerradas tienen la propiedad de dividir el espacio tridimensional (donde siempre pueden ser encajadas) en dos regiones diferentes y disjuntas: una acotada por dicha superficie que es de volumen finito y otra no acotada exterior a dicho volumen.
Este término se utiliza para distinguirlas de las superficies que no encierran nada en su interior, como un plano infinito en referencia al espacio tridimensional. Es imposible hablar de que las superficies no orientables dividan el espacio tridimensional pues estas superficies no pueden ser encajadas en él.

Teorema de clasificación de superficies cerradas

Un importante resultado matemático es el teorema de clasificación de superficies cerradas, el cual afirma que toda superficie cerrada (es decir, compacta y sin frontera o borde) es homeomorfa a algún miembro de las siguientes tres familias de superficies:
  1. la esfera;
  2. la suma conexa de -toros, siendo ;
  3. la suma conexa de k planos proyectivos reales, siendo .
Dicho de otra manera, las superficies anteriores son todas las superficies cerradas que existen (salvo homeomorfismo). La superficies de las dos primeras familias son orientables. Es conveniente combinar las dos primeras familias, considerando la esfera como la suma conexa de cero toros. El número g de toros involucrados en la construcción se denomina género de la superficie. Puesto que la esfera y el toro tienen características de Euler 2 y 0, respectivamente, se deduce que la característica de Euler de la suma conexa de g toros es precisamente .
Deformando una 2-variedad con frontera.
Las superficies de la tercera familia son no-orientables. La característica de Euler del plano proyectivo real es 1, así la suma conexa de k de ellos es .
De todo esto se sigue, que una superficie cerrada está determinada -salvo homeomorfismo- por dos propiedades: el valor numérico de su característica de Euler (o su género) y si es o no-orientable.
Es posible clasificar también las superficies que no son cerradas (es decir, con frontera). Esto se obtiene como el esquema anterior, añadiendo el número de fronteras que tiene la superficie. 

No hay comentarios:

Publicar un comentario