Flujo genético[editar]
El flujo genético es el intercambio de genes entre poblaciones, usualmente de la misma especie. Como ejemplos de flujo génico se pueden mencionar el cruzamiento de individuos tras la inmigración de una población en el territorio de otra, o, en el caso de las plantas, el intercambio de polen entre poblaciones diferentes. La transferencia de genes entre especies conlleva la formación de híbridos o la transferencia horizontal de genes.147
La inmigración y la emigración de individuos en las poblaciones naturales pueden causar cambios en las frecuencias alélicas, como así también la introducción ―o desaparición― de variantes alélicas dentro de un acervo genético ya establecido. Las separaciones físicas en el tiempo, espacio o nichos ecológicos específicos que puede existir entre las poblaciones naturales restringen o imposibilitan el flujo génico. Además de estas restricciones al intercambio de genes entre poblaciones existen otros mecanismos de aislamiento reproductivo conformados por características, comportamientos y procesos fisiológicos que impiden que los miembros de dos especiesdiferentes puedan cruzarse o aparearse entre sí, producir descendencia o que esta sea viable o fértil. Estas barreras constituyen una fase indispensable en la formación de nuevas especies ya que mantienen las características propias de las mismas a través del tiempo al restringir o eliminar el flujo genético entre los individuos de diferentes poblaciones.148149150151
Las especies distintas pueden ser interfértiles, dependiendo de cuánto han divergido desde su ancestro común; por ejemplo, la yegua y el asno pueden aparearse y producir la mula.152 Tales híbridos son generalmente estériles debido a las diferencias cromosómicas entre las especies parentales, que impiden el emparejamiento correcto de los cromosomas durante la meiosis. En este caso, las especies estrechamente relacionadas pueden cruzarse con regularidad, pero la selección natural actúa contra los híbridos. Sin embargo, de vez en cuando se forman híbridos viables y fértiles que pueden presentar propiedades intermedias entre sus especies paternales o poseer un fenotipo totalmente nuevo.153
La importancia de la hibridación en la creación de nuevas especies de animales no está clara, aunque existen ejemplos bien documentados como el de la rana Hyla versicolor.154155 La hibridación es, sin embargo, un mecanismo importante de formación de nuevas especies en las plantas, ya que estas toleran la poliploidía ―la duplicación de todos los cromosomas de un organismo― más fácilmente que los animales;156157 la poliploidía restaura la fertilidad en los híbridos interespecíficos debido a que cada cromosoma es capaz de aparearse con un compañero idéntico durante la meiosis.158159
Los mecanismos de la evolución[editar]
Hay dos mecanismos básicos de cambio evolutivo: la selección natural y la deriva genética. La selección natural favorece a los genes que mejoran la capacidad de supervivencia y reproducción del organismo. La deriva genética es el cambio en la frecuencia de los alelos, provocado por transmisión aleatoria de los genes de una generación a la siguiente. La importancia relativa de la selección natural y de la deriva genética en una población varía dependiendo de la fuerza de la selección y del tamaño poblacional efectivo, que es el número de ejemplares de esa población capaces de reproducirse.160 La selección natural suele predominar en las poblaciones grandes, mientras que la deriva genética predomina en las pequeñas. El predominio de la deriva genética en poblaciones pequeñas puede llevar incluso a la fijación de mutaciones ligeramente deletéreas.161 Como resultado de ello, los cambios en el tamaño de una población pueden influir significativamente en el curso de la evolución. Los denominados «cuellos de botella», o descensos drásticos temporarios del tamaño efectivo de la población, suponen una pérdida o erosión de la variabilidad genética y conllevan la formación de poblaciones genéticamente más uniformes. Los cuellos de botella pueden ser el resultado de catástrofes, variaciones en el medio ambiente o alteraciones en el flujo genético causadas por una migración reducida, la expansión a nuevos hábitats, o una subdivisión de la población.160
Selección natural[editar]
La selección natural es el proceso por el cual las mutaciones genéticas que mejoran la capacidad reproductiva se vuelven, y permanecen, cada vez más frecuentes en las sucesivas generaciones de una población. Se la califica a menudo de «mecanismo autoevidente», pues es la consecuencia necesaria de tres hechos simples: (a) dentro de las poblaciones de organismos hay variación heredable (b) los organismos producen más descendientes de los que pueden sobrevivir, y (c) tales descendientes tienen diferentes capacidades para sobrevivir y reproducirse.162
El concepto central de la selección natural es la aptitud biológica de un organismo.163 La aptitud, ajuste o adecuación influye en la medida de la contribución genética de un organismo a la generación siguiente.163 Sin embargo, la aptitud no es simplemente igual al número total de descendientes de un determinado organismo, ya que también cuantifica la proporción de generaciones posteriores que llevan los genes de ese organismo.164 Por ejemplo, si un organismo puede sobrevivir y reproducirse pero sus descendientes son demasiado pequeños o enfermizos como para llegar a la edad reproductiva, la contribución genética de ese organismo a las futuras generaciones será muy baja y, por ende, su aptitud también lo es.163
Por consiguiente, si un alelo aumenta la aptitud más que otros, con cada generación el alelo será más común dentro de la población. Se dice que tales rasgos son «seleccionados favorablemente». Una mejora de la supervivencia o una mayor fecundidad son ejemplos de rasgos que pueden aumentar la aptitud. En cambio, la menor aptitud causada por un alelo menos beneficioso o deletéreo hace que este sea cada vez más raro en la población y sufra una «selección negativa».165 Hay que subrayar que la aptitud de un alelo no es una característica fija: si el ambiente cambia, los rasgos que antes eran neutros o nocivos pueden ser beneficiosos y viceversa.166 Por ejemplo, la polilla Biston betulariapresenta dos colores, uno claro denominado forma typica y otro oscuro llamado forma carbonaria. La forma typica, como su nombre indica, es la más frecuente en esta especie. No obstante, durante la revolución industrial en el Reino Unido los troncos de muchos árboles sobre los que se posaban las polillas se ennegrecieron por el hollín, lo que les daba las polillas de color oscuro una mayor oportunidad de sobrevivir y producir más descendientes al pasar más fácilmente desapercibidas para los depredadores. Sólo cincuenta años después de que se descubriera la primera polilla melánica, casi la totalidad de las polillas del área industrial de Manchester eran oscuras. Este proceso se revirtió a causa de la «Ley del aire limpio» (Clean Air Act) de 1956, que redujo la polución industrial. Al aclararse el color de los troncos, las polillas oscuras volvieron a ser más fácilmente visibles por los depredadores y su número disminuyó.167 Sin embargo, aunque la dirección de la selección cambie, los rasgos que se hubiesen perdido en el pasado no pueden volver a obtenerse de forma idéntica ―situación que describe la Ley de Dollo o «Ley de la irreversibilidad evolutiva»―.168 De acuerdo con esta hipótesis, una estructura u órgano que se ha perdido o descartado durante el transcurso de la evolución no volverá a aparecer en ese mismo linaje de organismos.169170 Según Richard Dawkins, esta hipótesis es «una declaración sobre la improbabilidad estadística de seguir exactamente la misma trayectoria evolutiva dos veces o, de hecho, una misma trayectoria particular en ambas direcciones».171
Dentro de una población, la selección natural para un determinado rasgo que varía en forma continua, como la altura, se puede categorizar en tres tipos diferentes. El primero es la «selección direccional», que es un cambio en el valor medio de un rasgo a lo largo del tiempo; por ejemplo, cuando los organismos cada vez son más altos.172 En segundo lugar se halla la «selección disruptiva» que es la selección de los valores extremos de un determinado rasgo, lo que a menudo determina que los valores extremos sean más comunes y que la selección actúe en contra del valor medio; esto implica, en el ejemplo anterior, que los organismos bajos y altos tienen una ventaja, pero los de altura media no. Finalmente, en la «selección estabilizadora», la selección actúa en contra de los valores extremos, lo que determina una disminución de la varianza alrededor del promedio y una menor variabilidad de la población para ese carácter en particular;162173 si se diera este tipo de selección, todos los organismos de una población adquirirían paulatinamente una altura similar.
Un tipo especial de selección natural es la selección sexual, que actúa a favor de cualquier rasgo que aumente el éxito reproductivo por aumentar el atractivo de un organismo para sus parejas potenciales.174 Ciertos rasgos adquiridos por los machos por selección sexual ―tales como los cuernos voluminosos, cantos de apareamiento o colores brillantes― pueden reducir las posibilidades de supervivencia, por ejemplo, por atraer a los depredadores.175 No obstante, Esta desventaja reproductiva se compensa por un mayor éxito reproductivo de los machos que presentan estos rasgos.176
Un área de estudio activo es la denominada «unidad de selección»; se ha dicho que la selección natural actúa a nivel de genes, células, organismos individuales, grupos de organismos e incluso especies.177178 Ninguno de estos modelos es mutuamente exclusivo, y la selección puede actuar en múltiples niveles a la vez.179 Por ejemplo, debajo del nivel del individuo, hay genes denominados transposones que intentan replicarse en todo el genoma.180 La selección por encima del nivel del individuo, como la selección de grupo, puede permitir la evolución de la cooperación.181
Deriva genética[editar]
La deriva genética es el cambio en la frecuencia de los alelos entre una generación y la siguiente, y tiene lugar porque los alelos de la descendencia son una muestra aleatoria de los padres, y por el papel que juega el azar en la hora de determinar si un ejemplar determinado sobrevivirá y se reproducirá.100 En términos matemáticos, los alelos están sujetos a errores de muestreo. Como resultado de ello, cuando las fuerzas selectivas están ausentes o son relativamente débiles, la frecuencia de los alelos tiende a «derivar» hacia arriba o hacia abajo aleatoriamente (en un paseo aleatorio). Esta deriva se detiene cuando un alelo se convierte finalmente fijado, es decir, o bien desaparece de la población, o bien sustituye totalmente el resto de genes. Así pues, la deriva genética puede eliminar algunos alelos de una población simplemente debido al azar. Incluso en la ausencia de fuerzas selectivas, la deriva genética puede hacer que dos poblaciones separadas que empiezan con la misma estructura genética se separen en dos poblaciones divergentes con un conjunto de alelos diferentes.182
El tiempo necesario para que un alelo quede fijado por la deriva genética depende del tamaño de la población; la fijación tiene lugar más rápido en poblaciones más pequeñas.183 La medida precisa de las poblaciones que es importante en este caso recibe el nombre de tamaño poblacional efectivo, que fue definida por Sewall Wright como el número teórico de ejemplares reproductivos que presenten el mismo grado observado de consanguinidad.
Aunque la selección natural es responsable de la adaptación, la importancia relativa de las dos fuerzas, selección natural y deriva genética, como impulsoras del cambio evolutivo en general es actualmente un campo de investigación en la biología evolutiva.184 Estas investigaciones fueron inspiradas por la teoría neutralista de la evolución molecular, que postula que la mayoría de cambios evolutivos son el resultado de la fijación de mutaciones neutras, que no tienen ningún efecto inmediato sobre la aptitud de un organismo.185 Por tanto, en este modelo, la mayoría de los cambios genéticos en una población son el resultado de una presión de mutación constante y de deriva genética.186
Las consecuencias de la evolución[editar]
Adaptación[editar]
La adaptación es el proceso mediante el cual una población se adecua mejor a su hábitat y también el cambio en la estructura o en el funcionamiento de un organismo que lo hace más adecuado a su entorno.187188 Este proceso tiene lugar durante muchas generaciones,189 se produce por selección natural,190 y es uno de los fenómenos básicos de la biología.191
La importancia de una adaptación sólo puede entenderse en relación con el total de la biología de la especie. Julian Huxley192
De hecho, un principio fundamental de la ecología es el denominado principio de exclusión competitiva: dos especies no pueden ocupar el mismo nicho en el mismo ambiente por un largo tiempo.193 En consecuencia, la selección natural tenderá a forzar a las especies a adaptarse a diferentes nichos ecológicos para reducir al mínimo la competencia entre ellas.194
La adaptación es, en primer lugar, un proceso en lugar de una parte física de un cuerpo.195 La distinción puede apreciarse, por ejemplo, en los trematodos ―parásitos internos con estructuras corporales muy simples pero con un ciclo de vida muy complejo― en los que sus adaptaciones a un medio ambiente tan inusual no son el producto de caracteres observables a simple vista sino en aspectos críticos de su ciclo vital.196 Sin embargo, el concepto de adaptación también incluye aquellos aspectos de los organismos, de las poblaciones o de las especies que son el resultado del proceso adaptativo. Mediante la utilización del término «adaptación» para el proceso evolutivo y «rasgo o carácter adaptativo» para el producto del mismo, los dos sentidos del concepto se distinguen perfectamente. Las definiciones de estos conceptos, debidas a Theodosius Dobzhansky, son básicas. Así, la «adaptación» es el proceso evolutivo por el cual un organismo se vuelve más capaz de vivir en su hábitato hábitats,197 mientras que la «adaptabilidad» es el estado de estar adaptado, o sea, el grado en que un organismo es capaz de vivir y reproducirse en un determinado conjunto de hábitats.198 Finalmente, un «carácter adaptativo» es uno de los aspectos del patrón de desarrollo de un organismo, el cual le permite o le incrementa la probabilidad de sobrevivir y reproducirse.199
La adaptación puede causar ya sea la ganancia de una nueva característica o la pérdida de una función ancestral. Un ejemplo que muestra los dos tipos de cambio es la adaptación de las bacterias a la selección por antibióticos, con cambios genéticos que causan resistencia a los antibióticos debido a que se modifica la diana de la droga o por el aumento de la actividad de los transportadores que extraen la droga fuera de la célula.200 Otros ejemplos notables son la evolución en laboratorio de las bacterias Escherichia coli para que puedan ser capaces de utilizar el ácido cítrico como un nutriente, cuando las bacterias de tipo silvestre no lo pueden hacer,201 la evolución de una nueva enzima en Flavobacterium que permite que estas bacterias puedan crecer en los subproductos de la fabricación del nylon,202203 y la evolución de una vía metabólica completamente nueva en la bacteria del suelo Sphingobium que le permite degradar el pesticida sintético pentaclorofenol.204205 Una idea interesante, aunque todavía controvertida, es que algunas adaptaciones pueden aumentar la capacidad de los organismos para generar diversidad genética y para adaptarse por selección natural ―o sea, aumentarían la capacidad de evolución―206207
La adaptación se produce a través de la modificación gradual de las estructuras existentes. En consecuencia, las estructuras con organización interna similar pueden tener diferentes funciones en organismos relacionados. Este es el resultado de una sola estructura ancestral que ha sido adaptada para funcionar de diferentes formas. Los huesos de las alas de los murciélagos, por ejemplo, son muy similares a los de los pies del ratón y los de las manos de los primates, debido a que todas estas estructuras descienden a partir de un ancestro común de los mamíferos.209 Dado que todos los organismos vivos están relacionados en cierta medida, incluso los órganos que parecen tener una estructura poco o nada similar, como los ojos de los artrópodos, del calamar y de los vertebrados, o las extremidades y las alas de artrópodos y vertebrados, pueden depender de un conjunto común de genes homólogos que controlan su montaje y funcionamiento, lo que se denomina homología profunda.210211
Durante la adaptación, algunas estructuras pueden perder su función original y convertirse en estructuras vestigiales.212 Estas estructuras pueden carecer de funcionalidad en una especie actual, sin embargo, pueden haber tenido una clara función en la especie ancestral o en otras especies estrechamente relacionadas. Los ejemplos incluyen pseudogenes,213 los restos no funcionales de los ojos de los peces cavernícolas ciegos,214 las alas en las especies de aves que no vuelan215 y la presencia de huesos de la cadera en las ballenas y en las serpientes.208 En los seres humanos también existen ejemplos de estructuras vestigiales, las que incluyen las muelas de juicio,216 el coxis,212 el apéndice vermiforme,212 e incluso, vestigios de comportamiento tales como la piel de gallina217 y otros reflejos primitivos.218219220221
Sin embargo, muchos rasgos que parecen ser simples adaptaciones son, de hecho, exaptaciones: estructuras originalmente adaptadas para una función, pero que coincidentemente se hicieron útiles para alguna otra función durante el proceso.222 Un ejemplo es el lagarto africano Holaspis guentheri que desarrolló una cabeza muy plana para esconderse en las grietas, hecho que puede observarse en sus parientes cercanos. Sin embargo, en esta especie, la cabeza se ha convertido en tan aplastada que le permite deslizarse de árbol en árbol.222 Las vejigas natatorias de los peces teleósteos son otro ejemplo de exaptación ya que, si bien derivan directamente de los pulmones de los peces pulmonados ancestrales, son empleadas como regulador de la flotación.223
Un área de investigación actual en biología evolutiva del desarrollo es la base del desarrollo de las adaptaciones y de las exaptaciones.224 Esta área de investigación aborda el origen y la evolución de desarrollo embrionario y de qué modo las modificaciones de los procesos de desarrollo generan nuevas características.225 Estos estudios han demostrado que la evolución puede alterar el desarrollo para crear nuevas estructuras, tales como las estructuras óseas de los embriones que se desarrollan en la mandíbula en algunos animales, en cambio forman parte del oído medio en los mamíferos.226 También es posible que las estructuras que se han perdido en la evolución vuelvan a aparecer debido a los cambios que se producen en los genes del desarrollo, como por ejemplo una mutación en los pollos que determina que los embriones desarrollen dientes similares a los de cocodrilos.227 De hecho, es cada vez es más claro que la mayoría de las alteraciones en la forma de los organismos se deben a cambios en un pequeño conjunto de genes conservados.228
Coevolución[editar]
La interacción entre organismos puede producir conflicto o cooperación. Cuando interactúan dos especies diferentes, como un patógeno y un hospedador, o un depredador y su presa, las especies pueden desarrollar conjuntos de adaptaciones complementarias. En este caso, la evolución de una especie provoca adaptaciones en la otra. A su vez, estos cambios en la segunda especie provocan adaptaciones en la primera. Este ciclo de selección y respuesta recibe el nombre de coevolución.229 Un ejemplo es la producción de tetradotoxina por parte del tritón de Oregón y la evolución de una resistencia a esta toxina en su predador, la serpiente de jarretera. En esta pareja predador-presa, la carrera armamentista evolutiva ha producido niveles altos de toxina en el tritón, y los correspondientes niveles altos de resistencia en la serpiente.230
Especiación[editar]
La especiación (o cladogénesis) es el proceso por el cual una especie diverge en dos o más especies descendientes.231 Los biólogos evolutivos ven las especies como fenómenos estadísticos y no como categorías o tipos. Este planteamiento es contrario a la intuición, ya que el concepto clásico de especie sigue estando muy arraigado, con la especie vista como una clase de organismos que se ejemplifica en un «espécimen tipo», el cual posee todas las características comunes a dicha especie. En su lugar, una especie se define ahora como un linaje que comparte un único acervo genético y evoluciona independiente. Esta definición tiene límites difusos, a pesar de que se utilizan propiedades tanto genéticas como morfológicas para ayudar a diferenciar los linajes estrechamente relacionados.232 De hecho, la definición exacta del término «especie» está todavía en discusión, particularmente para organismos basados en células procariotas;233 es lo que se denomina «problema de las especies».234 Diversos autores han propuesto una serie de definiciones basadas en criterios diferentes, pero la aplicación de una u otra es finalmente una cuestión práctica, dependiendo en cada caso concreto de las particularidades del grupo de organismos en estudio.234 Actualmente, la unidad de análisis principal en biología es la población, un conjunto observable de individuos que interactúan, en lugar de la especie, un conjunto observable de individuos que se parecen entre sí.
La especiación ha sido observada en múltiples ocasiones tanto en condiciones de laboratorio controladas como en la naturaleza.235 En los organismos que se reproducen sexualmente, la especiación es el resultado de un aislamiento reproductivo seguido de una divergencia genealógica. Hay cuatro modalidades de especiación. La más habitual en los animales es la especiación alopátrica, que tiene lugar en poblaciones que inicialmente están geográficamente aisladas, como en el caso de la fragmentación de hábitat o las migraciones. En estas condiciones, la selección puede causar cambios muy rápidos en la apariencia y el comportamiento de los organismos.236237 Como la selección y la deriva actúan de manera independiente en poblaciones aisladas del resto de su especie, la separación puede crear finalmente organismos que no se pueden reproducir entre ellos.238
La segunda modalidad de especiación es la especiación peripátrica, que tiene lugar cuando poblaciones pequeñas de organismos quedan aisladas en un nuevo medio. Se diferencia de la especiación alopátrica en que las poblaciones aisladas son numéricamente mucho más pequeñas que la población madre. Aquí, el efecto fundador causa una especiación rápida por medio de una rápida deriva genética y selección en un acervo génico pequeño.239
La tercera modalidad de especiación es la especiación parapátrica. Se parece a la especiación peripátrica en que una pequeña población coloniza un nuevo hábitat, pero se diferencia en que no hay ninguna separación física entre las dos poblaciones. En cambio, la especiación es el resultado de la evolución de mecanismos que reducen el flujo génico entre ambas poblaciones.231 Generalmente, esto ocurre cuando ha habido un cambio drástico en el medio dentro del hábitat de la especie madre. Un ejemplo es la hierba Anthoxanthum odoratum, que puede sufrir una especiación parapátrica en respuesta a contaminación metálica localizada proveniente de minas.240 En este caso, evolucionan plantas con una resistencia a niveles altos de metales en el suelo. La selección que desfavorece los cruces con la especie madre, sensible a los metales, produce un cambio en la época de floración de las plantas resistentes a los metales, causando el aislamiento reproductivo. La selección en contra de híbridos entre dos poblaciones puede causar refuerzo, como es la diferenciación de aquellos rasgos que promueven la reproducción dentro de la especie, así como el desplazamiento de caracteres, que es cuando dos especies se vuelven más diferentes en apariencia en el área geográfica en que se solapan.241
Finalmente, en la especiación simpátrica, las especies divergen sin que haya aislamiento geográfico o cambios en el hábitat. Esta modalidad es rara, pues incluso una pequeña cantidad de flujo génico puede eliminar las diferencias genéticas entre partes de una población.242 En general, en los animales, la especiación simpátrica requiere la evolución de diferencias genéticas y un apareamiento no aleatorio, para que se pueda desarrollar un aislamiento reproductivo.243
Un tipo de especiación simpátrica es el cruce de dos especies relacionadas para producir una nueva especie híbrida. Esto no es habitual en los animales, pues los híbridos animales suelen ser estériles, ya que durante la meiosis los cromosomas homólogos de cada padre, siendo de especies diferentes, no pueden aparearse con éxito. Es más habitual en las plantas, pues las plantas duplican a menudo su número de cromosomas, para formar poliploides.244 Esto permite a los cromosomas de cada especie parental formar una pareja complementaria durante la meiosis, ya que los cromosomas de cada padre ya son representados por una pareja.245 Un ejemplo de este tipo de especiación es cuando las especies vegetales Arabidopsis thaliana y Arabidopsis arenosa se cruzaron para producir la nueva especie Arabidopsis suecica.246 Esto tuvo lugar hace aproximadamente 20 000 años,247 y el proceso de especiación ha sido repetido en el laboratorio, lo que permite estudiar los mecanismos genéticos implicados en este proceso.248 De hecho, la duplicación de cromosomas dentro de una especie puede ser una causa habitual de aislamiento reproductivo, pues la mitad de los cromosomas duplicados quedarán sin pareja cuando se aparean con los de organismos no duplicados.234
Los episodios de especiación son importantes en la teoría del equilibrio puntuado, que contempla patrones en el registro fósil de rápidos momentos de especiación intercalados con periodos relativamente largos de estasis, durante los que las especies permanecen prácticamente sin modificar.249 En esta la teoría, la especiación y la evolución rápida están relacionadas, y la selección natural y la deriva genética actúan de forma particularmente intensa sobre los organismos que sufren una especiación en hábitats nuevos o pequeñas poblaciones. Como resultado de ello, los períodos de estasis del registro fósil corresponden a la población madre, y los organismos que sufren especiación y evolución rápida se encuentran en poblaciones pequeñas o hábitats geográficamente restringidos, por lo que raramente quedan preservados en forma de fósiles.250
Extinción[editar]
La extinción es la desaparición de una especie entera. La extinción no es un acontecimiento inusual, pues aparecen a menudo especies por especiación, y desaparecen por extinción.251 De hecho, la práctica totalidad de especies animales y vegetales que han vivido en la Tierra están actualmente extinguidas,252 y parece que la extinción es el destino final de todas las especies.253 Estas extinciones han tenido lugar continuamente durante la historia de la vida, aunque el ritmo de extinción aumenta drásticamente en los ocasionales eventos de extinción.254 La extinción del Cretácico-Terciario, durante la cual se extinguieron los dinosaurios, es la más conocida, pero la anterior extinción Permo-Triásica fue aún más severa, causando la extinción de casi el 96% de las especies.254 La extinción del Holoceno es una extinción en masa que todavía dura y que está asociada con la expansión de la humanidad por el globo terrestre en los últimos milenios. El ritmo de extinción actual es de 100 a 1000 veces mayor que el ritmo medio, y hasta un 30% de las especies pueden estar extintas a mediados del siglo XXI.255 Las actividades humanas son actualmente la causa principal de esta extinción que aún continúa;256 es posible que el calentamiento global acelere aún más en el futuro.257
El papel que juega la extinción en la evolución depende de qué tipo de extinción se trate.254 Las causas de las continuas extinciones de «bajo nivel», que forman la mayoría de extinciones, no están bien comprendidas y podrían ser el resultado de la competencia entre especies por recursos limitados (exclusión competitiva).2 Si la competencia de otras especies altera la probabilidad de que se extinga una especie, esto podría situar la selección de especies como un nivel de la selección natural.177 Las extinciones masivas intermitentes también son importantes, pero en lugar de actuar como fuerza selectiva, reducen drásticamente la diversidad de manera indiscriminada y promueven explosiones de rápida evolución y especiación en los supervivientes.
No hay comentarios:
Publicar un comentario