domingo, 8 de marzo de 2015

GEOMETRÍA FRACTALES

fractales Nova son una familia de fractales relacionados con el fractal de NewtonNova es una fórmula que se implementa en la mayoría de programas de arte fractal.
La fórmula de Mandelbrot Nova es un caso especial generalizado del fractal de Newton:
 Z \mapsto z - R \frac{z^{p}-1}{pz^{p-1}},
donde  R \,  se dice que es una constante de relajación y  p \in \mathbb{C}. Hay que tener en cuenta que esta expresión es equivalente a
 Z \mapsto z - R \frac{f}{f '}\,
por  f = z^p-1 \, , que es exactamente la fórmula que describe los fractales Newton para un valor específico de  f \, .


 fractales oscilantes son fractales obtenidos por el método de G. Julia o de Mandelbrot1 , ya que de forma alternativa se iteran dos o más funciones distintas, hasta la convergencia hacia un determinado valor o la divergencia al infinito. En los ejemplos que reproducimos más adelante pueden verse algunos fractales oscilantes2 , tipo Mandelbrot y tipo Julia, que están coloreados mediante el algoritmo de la velocidad de escape.- .........................................:http://es.wikipedia.org/w/index.php?title=Especial:Libro&bookcmd=download&collection_id=e1f59afac6025cade47eb5eb7685fdfa02411e38&writer=rdf2latex&return_to=Anexo%3AFractales+oscilantes


fractal es que su dimensión de Hausdorff (δ) es estrictamente mayor que su dimensión topológica.1 Aquí se muestra una lista de fractales ordenados de forma creciente por su dimensión de Hausdorff, con el objetivo de visualizar qué significa que un fractal tenga una dimensión mayor o menor.- .......................:http://es.wikipedia.org/w/index.php?title=Especial:Libro&bookcmd=download&collection_id=0e266d0ea02308ed2d3002016539c881e1f40754&writer=rdf2latex&return_to=Anexo%3AFractales+por+dimensi%C3%B3n+de+Hausdorff

No hay comentarios:

Publicar un comentario