miércoles, 2 de marzo de 2016

Educación básica - Matemáticas


Números naturales

El conjunto de los números naturales se representa por IN y corresponde al siguiente conjunto numérico:
IN = {1, 2, 3, 4, 5, 6, 7, ........}
Los números naturales son un conjunto cerrado para las operaciones de la adición y la multiplicación, ya que al operar con cualquiera de sus elementos, resulta siempre un número perteneciente a IN.
Ejemplo: 2 + 6 = 8, el 8 pertenece a IN.
            5 · 3 = 15, el 15 pertenece a IN.
No ocurre lo mismo con las operaciones inversas, o sea, la sustracción y la división. Ellas no son operaciones cerradas en IN.
Ejemplo: 3 - 5 = -2, y -2 no es un elemento de IN.
             1 : 4 = 0,25; y 0,25 no es un elemento de IN.
En los números naturales se cumplen las siguientes propiedades para la adición:
Conmutatividad: a + b = b + a, con a y b pertenecientes a IN
Esto se puede apreciar claramente, ya que 3 + 6 = 9, es lo mismo que 6 + 3 = 9.
Asociatividad: (a + b) + c = a + (b + c), con a, b y c pertenecientes a IN
Verifiquemos que  (5 + 2) + 6 = 5 + (2 + 6). Resolvamos los paréntesis:
                                7 + 6 = 5 + 8
                                    13 = 13
En los números naturales se cumplen las siguientes propiedades para la multiplicación:
Conmutatividad: a · b = b · a, con a y b pertenecientes a IN
Esto se puede apreciar claramente, ya que 3 · 6 = 18, es lo mismo que 6 · 3 = 18.
Asociatividad: (a + b) + c = a + (b + c), con a, b y c pertenecientes a IN
Verifiquemos que  (5 · 2) · 6 = 5 · (2 · 6). Resolvamos los paréntesis:
                                10 · 6 = 5 · 12
                                    60 = 60
Elemento Neutro: a · 1 = a, con a perteneciente a IN.
Todo elemento de IN multiplicado por 1, resulta el mismo elemento. 5 · 1 = 5;   9 · 1 = 9 ...
Distributividad: a·(b + c) = a·b + a·c, con a, b y c pertenecientes a IN.
Verifiquemos que   5·(3 + 6) = 5·3 + 5·6
                                 5·9 = 15 + 30
                                  45 = 45



El conjunto de los números naturales está formado por:
N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...}
Con los números naturales podemos:
1 Contar los elementos de un conjunto (número cardinal).

Ejemplo

8 es el número de planetas del Sistema Solar.
Sistema solar
2 Expresar la posición u orden que ocupa un elemento en un conjunto (número ordinal).
Números ordinales
Ejemplo: El pez verde es el segundo (2º) de los tres peces.
3 Identificar y diferenciar los distintos elementos de un conjunto.
Números arbitrario
Ejemplo: Mi número de socio en el carnet del Club de vela es 40257.
Los números naturales están ordenados, lo que nos permite comparar dos números naturales entre sí:
Ejemplo:
> 3 flecha 5 es mayor que 3.
< 5 flecha 3 es menor que 5.
Los números naturales son ilimitados, si a un número natural le sumamos 1, obtenemos otro número natural.

Representación de los números naturales

Los números naturales se pueden representar en una recta ordenados de menor a mayor.
Sobre una recta señalamos un punto, que marcamos con el número cero (0).
A la derecha del cero, y con las mismas separaciones, situamos de menor a mayor los siguientes números naturales: 1, 2, 3...
Representación de los números naturales en una recta


   a + b = c
Los términos que intervienen en una suma se denominan:
a y b se denomina sumandos.
El resultado (c) se denomina suma.

Propiedades de la suma de números naturales

1 Operación interna
El resultado de sumar dos números naturales es otro número natural.
      suma
2 Asociativa
El modo de agrupar los sumandos no varía el resultado.
(a + b) + c = a + (b + c)
Ejemplo:
(2 + 3) + 5 = 2 + (3 + 5)
5 + 5 = 2 + 8
10 = 10
3 Conmutativa
El orden de los sumandos no varía la suma.
a + b = b + a
Ejemplo:
2 + 5 = 5 + 2
7 = 7
4 Elemento neutro
El 0 es el elemento neutro de la suma, porque todo número sumado con él da él mismo número.
a + 0 = 0 + a
Ejemplo:
a + 0 = a
3 + 0 = 3

No hay comentarios:

Publicar un comentario