viernes, 25 de septiembre de 2015

Electromagnetísmo


campo electromagnético es un campo físico, de tipo tensorial, producido por aquellos elementos cargados eléctricamente, que afecta a partículas con carga eléctrica.- ......................................:https://es.wikipedia.org/w/index.php?title=Campo_electromagn%C3%A9tico&printable=yes

¿Qué son los campos electromagnéticos?

Definiciones y fuentes

Campos eléctricos tienen su origen en diferencias de voltaje: entre más elevado sea el voltaje, más fuerte será el campo que resulta. Campos magnéticos tienen su origen en las corrientes eléctricas: una corriente más fuerte resulta en un campo más fuerte. Un campo eléctrico existe aunque no haya corriente. Cuando hay corriente, la magnitud del campo magnético cambiará con el consumo de poder, pero la fuerza del campo eléctrico quedará igual. (Información que proviene de Electromagnetic Fields, publicado por la Oficina Regional de la OMS para Europa (1999).

Fuentes naturales de campos electromagnéticos

En el medio en que vivimos, hay campos electromagnéticos por todas partes, pero son invisibles para el ojo humano. Se producen campos eléctricos por la acumulación de cargas eléctricas en determinadas zonas de la atmósfera por efecto de las tormentas. El campo magnético terrestre provoca la orientación de las agujas de los compases en dirección Norte-Sur y los pájaros y los peces lo utilizan para orientarse.

Fuentes de campos electromagnéticos generadas por el hombre

Además de las fuentes naturales, en el espectro electromagnético hay también fuentes generadas por el hombre: Para diagnosticar la rotura de un hueso por un accidente deportivo, se utilizan los rayos X. La electricidad que surge de cualquier toma de corriente lleva asociados campos electromagnéticos de frecuencia baja. Además, diversos tipos de ondas de radio de frecuencia más alta se utilizan para transmitir información, ya sea por medio de antenas de televisión, estaciones de radio o estaciones base de telefonía móvil.

Conceptos básicos sobre la longitud y frecuencia de las ondas

¿Por qué son tan diferentes los diversos tipos de campos electromagnéticos?
Una de las principales magnitudes que caracterizan un campo electromagnético (CEM) es su frecuencia, o la correspondiente longitud de onda. El efecto sobre el organismo de los diferentes campos electromagnéticos es función de su frecuencia. Podemos imaginar las ondas electromagnéticas como series de ondas muy uniformes que se desplazan a una velocidad enorme: la velocidad de la luz. La frecuencia simplemente describe el número de oscilaciones o ciclos por segundo, mientras que la expresión «longitud de onda» se refiere a la distancia entre una onda y la siguiente. Por consiguiente, la longitud de onda y la frecuencia están inseparablemente ligadas: cuanto mayor es la frecuencia, más corta es la longitud de onda.
El concepto se puede ilustrar mediante una analogía sencilla. Ate una cuerda larga al pomo de una puerta y sujete el extremo libre. Si lo mueve lentamente arriba y abajo generará una única onda de gran tamaño; un movimiento más rápido generará numerosas ondas pequeñas. La longitud de la cuerda no varía, por lo que cuantas más ondas genere (mayor frecuencia), menor será la distancia entre las mismas (menor longitud de onda).
¿Qué diferencia hay entre los campos electromagnéticos no ionizantes y la radiación ionizante?
La longitud de onda y la frecuencia determinan otra característica importante de los campos electromagnéticos. Las ondas electromagnéticas son transportadas por partículas llamadas cuantos de luz. Los cuantos de luz de ondas con frecuencias más altas (longitudes de onda más cortas) transportan más energía que los de las ondas de menor frecuencia (longitudes de onda más largas). Algunas ondas electromagnéticas transportan tanta energía por cuanto de luz que son capaces de romper los enlaces entre las moléculas. De las radiaciones que componen el espectro electromagnético, los rayos gamma que emiten los materiales radioactivos, los rayos cósmicos y los rayos X tienen esta capacidad y se conocen como «radiación ionizante». Las radiaciones compuestas por cuantos de luz sin energía suficiente para romper los enlaces moleculares se conocen como «radiación no ionizante». Las fuentes de campos electromagnéticos generadas por el hombre que constituyen una parte fundamental de las sociedades industriales (la electricidad, las microondas y los campos de radiofrecuencia) están en el extremo del espectro electromagnético correspondiente a longitudes de onda relativamente largas y frecuencias bajas y sus cuantos no son capaces de romper enlaces químicos.

Campos electromagnéticos de frecuencias bajas

En presencia de una carga eléctrica positiva o negativa se producen campos eléctricos que ejercen fuerzas sobre las otras cargas presentes en el campo. La intensidad del campo eléctrico se mide en voltios por metro (V/m). Cualquier conductor eléctrico cargado genera un campo eléctrico asociado, que está presente aunque no fluya la corriente eléctrica. Cuanto mayor sea la tensión, más intenso será el campo eléctrico a una determinada distancia del conductor.
Los campos eléctricos son más intensos cuanto menor es la distancia a la carga o conductor cargado que los genera y su intensidad disminuye rápidamente al aumentar la distancia. Los materiales conductores, como los metales, proporcionan una protección eficaz contra los campos magnéticos. Otros materiales, como los materiales de construcción y los árboles, presentan también cierta capacidad protectora. Por consiguiente, las paredes, los edificios y los árboles reducen la intensidad de los campos eléctricos de las líneas de conducción eléctrica situadas en el exterior de las casas. Cuando las líneas de conducción eléctrica están enterradas en el suelo, los campos eléctricos que generan casi no pueden detectarse en la superficie.
Los campos magnéticos se originan por el movimiento de cargas eléctricas. La intensidad de los campos magnéticos se mide en amperios por metro (A/m), aunque en las investigaciones sobre campos electromagnéticos los científicos utilizan más frecuentemente una magnitud relacionada, la densidad de flujo (en microteslas, µT). Al contrario que los campos eléctricos, los campos magnéticos sólo aparecen cuando se pone en marcha un aparato eléctrico y fluye la corriente. Cuanto mayor sea la intensidad de la corriente, mayor será la intensidad del campo magnético.
Al igual que los campos eléctricos, los campos magnéticos son más intensos en los puntos cercanos a su origen y su intensidad disminuye rápidamente conforme aumenta la distancia desde la fuente. Los materiales comunes, como las paredes de los edificios, no bloquean los campos magnéticos.

Campos eléctricos

Campos magnéticos

  1. La fuente de los campos magnéticos es la tensión eléctrica.
  2. Su intensidad se mide en voltios por metro (V/m).
  3. Puede existir un campo eléctrico incluso cuando el aparato eléctrico no está en marcha.
  4. La intensidad del campo disminuye conforme aumenta la distancia desde la fuente.
  5. La mayoría de los materiales de construcción protegen en cierta medida de los campos eléctricos.
  1. La fuente de los campos magnéticos es la corriente eléctrica.
  2. Su intensidad se mide en amperios por metro (A/m). Habitualmente, los investigadores de CEM utilizan una magnitud relacionada, la densidad de flujo (en microteslas (µT) o militeslas (mT).
  3. Los campos magnéticos se originan cuando se pone en marcha un aparato eléctrico y fluye la corriente.
  4. La intensidad del campo disminuye conforme aumenta la distancia desde la fuente.
  5. La mayoría de los materiales no atenúan los campos magnéticos.
Campos eléctricos
Al enchufar un cable eléctrico en una toma de corriente se generan campos eléctricos en el aire que rodea al aparato eléctrico. Cuanto mayor es la tensión, más intenso es el campo eléctrico producido. Como puede existir tensión aunque no haya corriente eléctrica, no es necesario que el aparato eléctrico esté en funcionamiento para que exista un campo eléctrico en su entorno.
(Por gentileza de la National Radiological Protection Board, Junta nacional de protección radiológica del Reino Unido)

Los campos magnéticos se generan únicamente cuando fluye la corriente eléctrica. En este caso, coexisten en el entorno del aparato eléctrico campos magnéticos y eléctricos. Cuanto mayor es la intensidad de la corriente, mayor es la intensidad del campo magnético. La transmisión y distribución de electricidad se realiza a tensión alta, mientras que en el hogar se utilizan tensiones bajas. Las tensiones de los equipos de transmisión de electricidad varían poco de unos días a otros; la corriente de las líneas de transmisión varía en función del consumo eléctrico.
Los campos eléctricos existentes en torno al cable de un electrodoméstico sólo desaparecen cuando éste se desenchufa o se desconecta de la toma de corriente, aunque no desaparecerán los campos eléctricos del entorno del cable situado en el interior de la pared que alimenta al enchufe.
¿En qué se diferencian los campos estáticos de los campos variables en el tiempo?
Un campo estático es el que no varía en el tiempo. Una corriente continua (DC, en inglés) es una corriente eléctrica que fluye siempre en el mismo sentido. En cualquier aparato eléctrico alimentado con pilas fluye corriente de la pila al aparato y de éste a la pila, generándose un campo magnético estático. El campo magnético terrestre es también un campo estático, así como el campo magnético que rodea a una barra imantada, el cual puede visualizarse por medio del dibujo que se forma cuando se espolvorean limaduras de hierro en torno a la barra.
En cambio, las corrientes alternas (AC, en inglés) forman campos electromagnéticos variables en el tiempo. Las corrientes alternas invierten su sentido de forma periódica. En la mayoría de los países de Europa la corriente alterna cambia de sentido con una frecuencia de 50 ciclos por segundo, o 50 Hz (hertz o hertzios) y, de forma correspondiente, el campo electromagnético asociado cambia de orientación 50 veces cada segundo. La frecuencia de la corriente eléctrica en los países de América del Norte es de 60 Hz.
¿Cuáles son las principales fuentes de campos de frecuencia baja, media y alta?
Los campos electromagnéticos variables en el tiempo que producen los aparatos eléctricos son un ejemplo de campos de frecuencia extremadamente baja (FEB, o ELF, en inglés), con frecuencias generalmente de hasta 300 Hz. Otras tecnologías producen campos de frecuencia intermedia (FI), con frecuencias de 300 Hz a 10 MHz, y campos de radiofrecuencia (RF), con frecuencias de 10 MHz a 300 GHz. Los efectos de los campos electromagnéticos sobre el organismo no sólo dependen de su intensidad sino también de su frecuencia y energía. Las principales fuentes de campos de FEB son la red de suministro eléctrico y todos los aparatos eléctricos; las pantallas de computadora, los dispositivos antirrobo y los sistemas de seguridad son las principales fuentes de campos de FI y las principales fuentes de campos de RF son la radio, la televisión, las antenas de radares y teléfonos celulares y los hornos de microondas. Estos campos inducen corrientes en el organismo que, dependiendo de su amplitud y frecuencia, pueden producir diversos efectos como calentamiento y sacudidas eléctricas. (No obstante, para producir estos efectos, los campos exteriores al organismo deben ser muy intensos, mucho más que los presentes habitualmente en el medio.)

Campos electromagnéticos de frecuencias altas

Los teléfonos móviles, la televisión y los transmisores de radio y radares producen campos de RF. Estos campos se utilizan para transmitir información a distancias largas y son la base de las telecomunicaciones, así como de la difusión de radio y televisión en todo el mundo. Las microondas son campos de RF de frecuencias altas, del orden de GHz. En los hornos de microondas, utilizamos estos campos para el calentamiento rápido de alimentos.
En las frecuencias de radio, los campos eléctricos y magnéticos están estrechamente relacionados y sus niveles se miden normalmente por la densidad de potencia, en vatios por metro cuadrado (W/m2).








Catástrofe ultravioleta

La catástrofe ultravioleta, es un fallo de la teoría clásica del electromagnetismo al explicar la emisión electromagnética de un cuerpo en equilibrio térmico con el ambiente. De acuerdo con las predicciones del electromagnetismo clásico, un cuerpo negro ideal en equilibrio térmico debía emitir energía en todos los rangos de frecuencia; de manera que a mayor frecuencia, mayor energía.
Así lo mostraron Rayleigh y Jeans, por quienes la catástrofe de ultravioleta también se conoce como catástrofe de Rayleigh-Jeans. De acuerdo con la ley que ellos enunciaron, la densidad de energía emitida para cada frecuencia debía ser proporcional al cuadrado de la última, lo que implica que las emisiones a altas frecuencias (en el ultravioleta) deben portar enormes cantidades de energía. Tanto es así, que al calcular la cantidad total de energía radiada (es decir, la suma de las emisiones en todos los rangos de frecuencia), se aprecia que ésta es infinita, hecho que pone en riesgo los postulados de conservación de la energía.
I(\nu) = \frac{8\pi}{c^{3}}T\kappa_B\nu^{2}
La anterior es la formulación matemática de la Ley de Rayleigh-Jeans, en donde I(\nu) es la radiancia espectral (intensidad de radiación) para la frecuencia  \nu.  \kappa_B es la constante de Boltzmann, T es la temperatura y c es la velocidad de la luz. Es importante resaltar que esta ley es el resultado del análisis desde la teoría del electromagnetismo clásico.
Los experimentos para medir la radiación a bajas frecuencias (en el infrarrojo) arrojaron resultados acordes con la teoría; pero ésta implicaba que todos los objetos estarían emitiendo constantemente radiación visible, es decir, que actuarían como fuentes de luz todo el tiempo. Esto, sin embargo, es falso.
Posteriormente, cuando se desarrollaron técnicas de medición apropiadas, se estudió la radiación en el visible y en el ultravioleta, y la observación experimental mostró claramente que la predicción del electromagnetismo clásico, resumida en la ley de Rayleigh-Jeans, no se cumplía en dichos intervalos de radiación. En realidad, aunque la energía aumenta con el cuadrado de la frecuencia cuando esta es baja, al aumentarla más, la energía tiende a cero.
Energía radiada como función de la longitud de onda para varios cuerpos a diferentes temperaturas.
A menudo el análisis del caso se hace teniendo en cuenta la longitud de onda en lugar de la frecuencia, lo que resulta equivalente, ya que las dos cantidades son inversamente proporcionales.
En la gráfica de al lado se muestra cómo varía en la práctica la densidad de energía emitida en relación con la longitud de onda para cuerpos negros a diferentes temperaturas y se observa que dicha densidad tiende a cero en los dos extremos, tanto para las longitudes de onda cortas (altas frecuencias) como para las "largas" (frecuencias bajas).
Wilhelm Wien estudió la curva obtenida experimentalmente. En 1893 encontró que podía representarla aproximadamente mediante la siguiente fórmula:
I(\nu) = \frac{C_1\nu^{3}}{\exp({C_2\nu})}
donde C_1 y C_2 son constantes arbitrarias. Aunque esta ecuación sólo se aproxima a la curva, demuestra que el fenómeno tiene un comportamiento muy distinto al previsto por la física clásica.
Éste fue uno de los primeros indicios de que existen problemas irresolubles en el marco de la física clásica. La solución a este problema fue planteada por Max Planck en 1900, con lo que se conoce ahora como ley de Planck. Ese momento se considera como el principio de la Mecánica cuántica.
La razón por la cual la física clásica no es capaz de explicar el fenómeno consiste en que el Teorema de equipartición de la energía no es válido cuando la energía térmica es mucho menor que la energía relacionada con la frecuencia de la radiación.

PLANCK Y LA CATÁSTROFE ULTRAVIOLETA

EN EL breve recuento que hicimos de la mecánica estadística sugerimos, tal vez, la idea de que los subsistemas eran siempre partículas en movimiento. Ésta es una inferencia errónea, pues los métodos de la mecánica estadística son más generales. Se pueden aplicar, por ejemplo, a las ondas electromagnéticas que oscilan en el interior de una cavidad, como aquella que imaginó Kirchhoff al tratar la radiación del cuerpo negro. Éste es también un sistema termodinámico, susceptible de análisis con las técnicas estadísticas. La conclusión de este análisis fue ¡la existencia del cuanto!
Herman Helmholtz (1821-1894), Rudolf Clausius (1822-1888) y Gustav Kirchhoff (1824-1887) tuvieron muchas cosas en común. Además de ser físicos alemanes contemporáneos y de haber hecho contribuciones fundamentales a la termodinámica —a Helmholtz debemos la primera ley, a Clausius la segunda y de las hazañas de Kirchhoff ya hemos hablado—, los tres fueron profesores de la Universidad de Berlín y ahí dejaron una gran tradición, que habrían de heredar dos de sus alumnos, Wien y Planck.
El primero de ellos, Wien, obtuvo su doctorado con Helmholtz y poco después empezó a trabajar en el problema de la radiación del cuerpo negro. Observándola encontró que las longitudes de onda de la radiación electromagnética emitida se distribuyen de una manera que no es uniforme, sino que su intensidad presenta un pico en un valor intermedio, como se muestra en la Figura 17. 
Figura 17. Intensidad de la radiación electromagnética emitida por un cuerpo negro. Se observa un pico en la intensidad para una longitud de onda intermedia. 
La longitud de onda en el pico de la curva varía inversamente con la temperatura, de tal forma que a medida que ésta aumenta el color predominante se corre hacia el azul. A esta propiedad se le llama la ley del desplazamiento de Wien, quien pudo deducirla con puro razonamiento termodinámico. Para ello supuso que en la cavidad del cuerpo negro existe un conjunto de ondas electromagnéticas que ejercen presión sobre las paredes de esa cavidad. Con este mismo modelo, lord Rayleigh pudo explicar la forma de la curva en la figura para frecuencias pequeñas; Wien mismo lo hizo cuando esas frecuencias son grandes, aunque ninguno de los dos pudo obtener de la mecánica estadística la forma completa de la curva. El cálculo de Rayleigh, correcto según los cánones de la física clásica, predecía una intensidad que siempre crecía con la frecuencia, como el cuadrado de ésta. En consecuencia, la energía total radiada es infinita y nos hallamos frente a una verdadera catástrofe ultravioleta.
Aunque primero realizó estudios sobre la física y la música, pronto Planck siguió la tradición establecida en Berlín por sus ilustres maestros y se dedicó a analizar problemas termodinámicos. Emplea el mismo modelo que lord Rayleigh y elige un simple oscilador armónico cargado (es decir, una carga que oscila sujeta a un resorte) para simular la emisión de luz. Con ello deduce de inmediato que la intensidad emitida a una cierta frecuencia se determina por dos factores: el primero, proporcional al cuadrado de la frecuencia, y el segundo, a la energía promedio contenida en el oscilador. El primer factor es equivalente a la ley de Rayleigh; el segundo, la energía promedio, es proporcional a la temperatura absoluta de la cavidad y la constante de proporcionalidad es, de acuerdo con un teorema general que Boltzmann probó en la mecánica estadística clásica, una constante universal k, que hoy llamamos la constante de Boltzmann. Con ello Planck obtiene un resultado acorde con la ley de Wien y con la catástrofe ultravioleta. Estas conclusiones de la mecánica y el electromagnetismo clásicos son inevitables.
Para eliminar esa catástrofe, Planck se vio forzado a una medida extrema y audaz. Al calcular la energía promedio en cada oscilador, abandonó las recetas de Boltzmann y postuló que las energías del oscilador sólo vienen en paquetes, que él denominó cuantos. La energía sólo puede ser múltiplo de una energía fundamental, 0, que es la de un paquete. Con esta suposición tan revolucionaria, Planck pudo explicar los resultados de la Figura 17, eliminando así la catástrofe ultravioleta. Al mismo tiempo, cerró el capítulo clásico de la física y abrió el que dominaría a esta ciencia durante el siglo XX: el capítulo de la física cuántica.

No hay comentarios:

Publicar un comentario