jueves, 25 de febrero de 2016

Química general


Estructura Atómica

Teoría atómica de la materia

Átomo es la porción más pequeña de la materia.
El primero en utilizar este término fue Demócrito (filósofo griego, del año 500 a.de C.), porque creía que todos los elementos estaban formados por pequeñas partículas INDIVISIBLES. Átomo, en griego, significa INDIVISIBLE. Es la porción más pequeña de la materia. Los átomos son la unidad básica estructural de todos los materiales de ingeniería.
En la actualidad no cabe pensar en el átomo como partícula indivisible, en él existen una serie de partículas subatómicas de las que protones neutrones y electrones son las más importantes.
Los átomos están formados por un núcleo, de tamaño reducido y cargado positivamente, rodeado por una nube de electrones, que se encuentran en la corteza.
ELECTRÓN
Es una partícula elemental con carga eléctrica negativa igual a 1,602 · 10-19 Coulomb y masa igual a 9,1093 · 10-28 g, que se encuentra formando parte de los átomos de todos los elementos.
NEUTRÓN
Es una partícula elemental eléctricamente neutra y masa ligeramente superior a la del protón (mneutrón=1.675 · 10-24 g), que se encuentra formando parte de los átomos de todos los elementos.
PROTÓN
Es una partícula elemental con carga eléctrica positiva igual a 1,602 · 10-19 Coulomb y cuya masa es 1837 veces mayor que la del electrón (mprotón=1.673 · 10-24 g). La misma se encuentra formando parte de los átomos de todos los elementos.
La nube de carga electrónica constituye de este modo casi todo el volumen del átomo, pero, sólo representa una pequeña parte de su masa. Los electrones, particularmente la masa externa determinan la mayoría de las propiedades mecánicas, eléctrica, químicas, etc., de los átomos, y así, un conocimiento básico de estructura atómica es importante en el estudio básico de los materiales de ingeniería. 

TEORÍA ATÓMICA DE DALTON

En el período 1803-1808, Jonh Dalton, utilizó los dos leyes fundamentales de las combinaciones químicas, es decir: la "Ley de conservación de la masa"(La masa total de las sustancias presentes después de una reacción química es la misma que la masa total de las sustancias antes de la reacción) y la "Ley de composición constante"(Todas las muestras de un compuesto tienen la misma composición, es decir las mismas proporciones en masa de los elementos constituyentes.)como base de una teoría atómica.
La esencia de la teoría atómica de la materia de Dalton se resume en tres postulados:
1.  Cada elemento químico se compone de partículas diminutas e indestructibles denominadas átomos. Los átomos no pueden crearse ni destruirse durante una reacción química.
2.  Todos los átomos de un elemento son semejantes en masa (peso) y otras propiedades, pero los átomos de un elemento son diferentes de los del resto de los elementos.
3.  En cada uno de sus compuestos, los diferentes elementos se combinan en una proporción numérica sencilla: así por ejemplo, un átomo de A con un átomo de B (AB), o un átomo de A con dos átomos de B (AB2).
La teoría atómica de Dalton condujo a la "Ley de las proporciones múltiples", que establece lo siguiente:
Si dos elementos forman más de un compuesto sencillo, las masas de un elemento que se combinan con una masa fija del segundo elemento, están en una relación de números enteros sencillos.

Modelo atómico de Thomson

Los experimentos de Thomson sobre los rayos catódicos en campos magnéticos y eléctricos dieron pie al descubrimiento del electrón he hizo posible medir la relación entre su carga y su masa; el experimento de gota de aceite de Millikan proporcionó la masa del electrón; el descubrimiento de la radioactividad (la emisión espontánea de radiación por átomos) fue una prueba adicional de que el átomo tiene una subestructura.
Una vez considerado el electrón como una partícula fundamental de la materia existente en todos los átomos, los físicos atómicos empezaron a especular sobre cómo estaban incorporadas estas partículas dentro de los átomos.
El modelo comúnmente aceptado era el que a principios del siglo XX propuso Joseph John Thomson, quién pensó que la carga positiva necesaria para contrarrestar la carga negativa de los electrones en un átomo neutro estaba en forma de nube difusa, de manera que el átomo consistía en una esfera de carga eléctrica positiva, en la cual estaban embebidos los electrones en número suficiente para neutralizar la carga positiva.



Modelo atómico de Rutherford


Para Ernest Rutherford, el átomo era un sistema planetario de electrones girando alrededor de un núcleo atómico pesado y con carga eléctrica positiva.
El módelo atómico de Rutherford puede resumirse de la siguiente manera:
El átomo posee un núcleo central pequeño, con carga eléctrica positiva, que contiene casi toda la masa del átomo.
Los electrones giran a grandes distancias alrededor del núcleo en órbitas circulares.
La suma de las cargas eléctricas negativas de los electrones debe ser igual a la carga positiva del núcleo, ya que el átomo es eléctricamente neutro.
Rutherford no solo dio una idea de cómo estaba organizado un átomo, sino que también calculó cuidadosamente su tamaño (un diámetro del orden de 10-10 m) y el de su núcleo (un diámetro del orden de 10-14m). El hecho de que el núcleo tenga un diámetro unas diez mil veces menor que el átomo supone una gran cantidad de espacio vacío en la organización atómica de la materia.
Para analizar cual era la estructura del átomo, Rutherford diseñó un experimento:
El experimento consistía en bombardear una fina lámina de oro con partículas alfa (núcleos de helio). De ser correcto el modelo atómico de Thomson, el haz de partículas debería atravesar la lámina sin sufrir desviaciones significativas a su trayectoria. Rutherford observó que un alto porcentaje de partículas atravesaban la lámina sin sufrir una desviación apreciable, pero un cierto número de ellas era desviado significativamente, a veces bajo ángulos de difusión mayores de 90 grados. Tales desviaciones no podrían ocurrir si el modelo de Thomson fuese correcto.
Representación esquemática de la dispersión de partículas en los experimentos realizados por Rutherford con láminas de oro. El bombardeo de una lámina de oro con partículas a mostró que la mayoría de ellas atravesaba la lámina sin desviarse. Ello confirmó a Rutherford que los átomos de la lámina debían ser estructuras básicamente vacías.

Veamos un ejercicio de aplicación:
El diámetro de una moneda de 2 céntimos de euro es de 13 mm. El diámetro de un átomo de cobre es sólo 2,6 Å. ¿Cuántos átomos de cobre podrían estar dispuestos lado a lado en una línea recta sobre el diámetro de dicha moneda?
La incógnita es el número de átomos de cobre. Podemos usar la relación siguiente:
1 átomo de cobre=2,6 Å, como factor de conversión que relaciona el número de átomos y la distancia.
Así, primero convertimos el valor del diámetro de la moneda a Å
13 mm · (10-3 m/1mm)(1 Å/10-10m)=1,3 ·108Å
1,3 ·108Å · (1 átomo de cobre/2,6 Å)=5,0·107átomos de Cu.
Esto es, 50 millones de átomos de cobre estarían en fila sobre el diametro de una moneda de 2 céntimos de euro.

No hay comentarios:

Publicar un comentario