jueves, 4 de febrero de 2016

Química general


el enlace metálico
Un enlace metálico es un enlace químico que mantiene unidos los átomos (unión entre núcleos atómicos y los electrones de valencia, que se juntan alrededor de éstos como una nube) de los metales entre sí.

La fuerza de atracción entre las cargas positivas de los núcleos y las cargas negativas de la nube de electrones mantienen unido el enlace metálico.

La forma de cumplir la regla de octeto es mediante la compartición de electrones entre muchos átomos. Se crea una nube de electrones que es compartida por todos los núcleos de los átomos que ceden electrones al conjunto.

Debido a la baja electronegatividad que poseen los metales, los electrones de valencia son extraídos de sus orbitales. Este enlace sólo puede estar en sustancias en estado sólido.

Este tipo de enlace se produce entre elementos poco electronegativos (metales).

Los electrones que se comparten se encuentran deslocalizados entre los átomos que los comparten.

Estos átomos se agrupan de forma muy cercana unos a otros, lo que produce estructuras muy compactas

Propiedades del Enlace Metálico:

Las propiedades más relevantes de los compuestos que presentan enlace metálico son los siguientes:
  • Temperaturas de fusión y ebullición: muy elevadas. Son sólidos a temperatura ambiente (excepto el mercurio que es líquido).
  • Conductividad eléctrica: Buenos conductores de la electricidad (nube de electrones deslocalizada) y del calor (facilidad de movimiento de electrones y de vibración de los restos atómicos positivos).
  • Ductilidad: Son dúctiles (facilidad de formar hilos) y maleables (facilidad de formar láminas) al aplicar presión. Esto no ocurre en los sólidos iónicos ni en los sólidos covalentes dado que al aplicar presión en estos caso, la estructura cristalina se rompe.
  • Dureza: Son en general duros (resistentes al rayado).
  • Oxidación: La mayoría se oxida con facilidad.

Otros Tipos de Enlaces:

EnlaceDescripciónPropiedades GeneralesEjemplos
IónicoUnión entre iones de distinto signo. 
Uno de loa átomos capta los
electrones del otro.
· Enlaces muy fuertes
· Alto punto de fusión(300-1000ºC) 
· Solubles en agua
· Conductores de electricidad en agua
La sal común:
Na+ Cl- → NaCl
CovalenteEnlace en el que se comparten
los electrones del último nivel.
Así alcanzan el octeto estable.
· Tª de fusión elevada (> 1000ºC)  
· Malos conductores de electricidad
· Alta dureza
· Insolubles

El gas cloro: 
Cl- Cl- → Cl2
Metálico
Unión entre los núcleos positivos
y la nube de electrones negativa.
· Tª de fusión muy elevada 
· Tª de ebullición muy elevada
· Buenos conductores de electricidad
· Dúctiles, maleables y alta dureza
· Se oxidan con facilidad
Red cristalina del cobre:
iones Cu2+


enlace metálico es un enlace químico que mantiene unidos los átomos (unión entre núcleos atómicos y los electrones de valencia, que se juntan alrededor de éstos como una nube) de los metales entre sí.
Estos átomos se agrupan de forma muy cercana unos a otros, lo que produce estructuras muy compactas. Se trata de líneastridimensionales que adquieren estructuras tales como: la típica de empaquetamiento compacto de esferas (hexagonal compacta), cúbica centrada en las caras o la cúbica centrada en el cuerpo.
En este tipo de estructura cada átomo metálico está dividido por otros doce átomos (seis en el mismo plano, tres por encima y tres por debajo). Además, debido a la baja electronegatividad que poseen los metales, los electrones de valencia son extraídos de sus orbitales. Este enlace sólo puede estar en sustancias en estado sólido.1
Los metales poseen algunas propiedades características que los diferencian de los demás materiales. Suelen ser sólidos a temperatura ambiente, excepto el mercurio, y tienen un punto de fusión alto.
El enlace metálico es característico de los elementos metálicos. Es un enlace fuerte, primario, que se forma entre elementos de la misma especie. Al estar los átomos tan cercanos unos de otros, interaccionan sus núcleos junto con sus nubes electrónicas, empaquetándose en las tres dimensiones, por lo que quedan los núcleos rodeados de tales nubes. Estos electrones libres son los responsables de que los metales presenten una elevada conductividad eléctrica y térmica, ya que estos se pueden mover con facilidad si se ponen en contacto con una fuente eléctrica. Los metales generalmente presentan brillo y son maleables. Los elementos con un enlace metálico están compartiendo un gran número de electrones de valencia, formando un mar de electrones rodeando un enrejado gigante de cationes. Muchos de los metales tienen puntos de fusión más altos que otros elementos no metálicos, por lo que se puede inferir que hay enlaces más fuertes entre los distintos átomos que los componen. La vinculación metálica es no polar, apenas hay diferencia de electronegatividad entre los átomos que participan en la interacción de la vinculación (en los metales, elementales puros) o muy poca (en las aleaciones), y los electrones implicados en lo que constituye la interacción a través de la estructura cristalina del metal. El enlace metálico explica muchas características físicas de metales, tales como maleabilidadductilidad, buenos en la conducción de calor y electricidad, y con brillo o lustre(devuelven la mayor parte de la energía lumínica que reciben).
La vinculación metálica es la atracción electrostática entre los átomos del metal o cationes y los electrones deslocalizados. Esta es la razón por la cual se puede explicar un deslizamiento de capas, dando por resultado su característica maleabilidad y ductilidad.
Los átomos del metal tienen por lo menos un electrón de valencia, no comparten estos electrones con los átomos vecinos, ni pierden electrones para formar los iones. En lugar los niveles de energía externos de los átomos del metal se traslapan. Son como enlaces covalentes identificados.

Teoría del gas electrónico

Estas propiedades se deben al hecho de que los electrones exteriores están ligados sólo «ligeramente» a los átomos, formando una especie de gas (también llamado «gas electrónico», «nube electrónica» o «mar de electrones»), que se conoce como enlace metálico. Drude y Lorentz, propusieron este modelo hacia 1900.2
Mediante la teoría del «gas electrónico» podemos explicar por qué los metales son tan buenos conductores del calor y la electricidad, pero es necesario comprender la naturaleza del enlace entre sus átomos.
Un primer intento para explicar el enlace metálico consistió en considerar un modelo en el cual los electrones de valencia de cada metal se podían mover libremente en la red cristalina. De esta forma, el retículo metálico se considera constituido por un conjunto de iones positivos (los núcleos rodeados por su capa de electrones) y electrones (los de valencia), en lugar de estar formados por átomos neutros.
En definitiva, un elemento metálico se considera que está constituido por cationes metálicos distribuidos regularmente e inmersos en un «gas electrónico» de valencia deslocalizados, actuando como un aglutinante electrostático que mantiene unidos a los cationes metálicos.
El modelo del «gas electrónico» permite una explicación cualitativa sencilla de la conductividad eléctrica y térmica de los metales. Dado que los electrones son móviles, se pueden trasladar desde el electrodo negativo al positivo cuando el metal se somete al efecto de una diferencia de potencial eléctrico. Los electrones móviles también pueden conducir el calor transportando la energía cinética de una parte a otra del cristal. El carácter dúctil y maleable de los metales está permitido por el hecho de que el enlace deslocalizado se extiende en todas las direcciones; es decir, no está limitado a una orientación determinada, como sucede en el caso de los sólidos de redes covalentes.
Cuando un cristal metálico se deforma, no se rompen enlaces localizados; en su lugar, el mar de electrones simplemente se adapta a la nueva distribución de los cationes, siendo la energía de la estructura deformada similar a la original. La energía necesaria para deformar un metal como el litio es relativamente baja, siendo, como es lógico, mucho mayor la que se necesita para deformar un metal de transición, porque este último posee muchos más electrones de valencia que son el aglutinante electrostático de los cationes.
Mediante la teoría del «gas electrónico» se pueden justificar de forma satisfactoria muchas propiedades de los metales, pero no es adecuada para explicar otros aspectos, como la descripción detallada de la variación de la conductividad entre los elementos metálicos.

enlace metálico comentario
Los átomos de los elementos metálicos se caracterizan por tener pocos electrones de valencia (electrones de la última capa). No pueden formar enlaces covalentes, pues compartiendo electrones no pueden llegar a adquirir la estructura de gas noble.
La estabilidad la consiguen de otro modo, los electrones de valencia de cada átomo entran a formar parte de "un fondo común", constituyendo una nube electrónica que rodea a todo el conjunto de iones positivos, dispuestos ordenadamente, formando un cristal metálico

* PROPIEDADES: La estructura comentada puede explicar las propiedades claramente.
-Alta conductividad térmica y eléctrica, los electrones pueden moverse con libertad por la nube electrónica.
-Son dúctiles (factibles de hilar) y maleables (factibles de hacer láminas), su deformación no implica una rotura de enlaces ni una aproximación de iones de igual carga, como ocurría en los compuestos iónicos por ejemplo.
-Los puntos de fusión son moderadamente altos, la estabilidad de la red positiva circundada por la nube de electrones es alta.
-Son difícilmente solubles en cualquier disolvente, por el mismo motivo que justifica el punto anterior. (Pensar en la forma de "atacar"el agua a un compuesto iónico, en un metal que es "un todo uniforme" no existe esa posibilidad.

Introducción:

Es el tipo de enlace que se produce cuando se combinan entre sí los elementos metálicos; es decir, elementos de electronegatividades bajas y que se diferencien poco.
Los metales forman unas redes metálicas compactas; es decir, con elevado índice de coordinación, por lo que suelen tener altas densidades. Las redes suelen ser hexagonales y cúbicas.
Hay dos modelos que explican la formación del enlace metálico. El modelo de la nube de electrones y la teoría de bandas.

Modelo de la nube de electrones:

Según este modelo, los átomos metálicos ceden sus electrones de valencia a una "nube electrónica" que comprende todos los átomos del metal. Así pues, el enlace metálico resulta de las atracciones electrostáticas entre los restos positivos y los electrones móviles que pertenecen en su conjunto a la red metálica.
En el enlace metálico, los electrones no pertenencen a ningún átomo determinado. Además, es un enlace no dirigido, porque la nube electrónica es común a todos los restos atómicos que forman la red.
Hay que aclarar que los átomos cuando han cedido los electrones a la nube común, no son realmente iones, ya que los electrones quedan dentro de la red, perteneciendo a todos los "restos positivos".

Este modelo es muy simple y sirve para interpretar muchas de las propiedades de los metales; aunque tiene ciertas limitaciones, principalmente en la explicación de la diferente conductividad de algunos metales.

Teoría de bandas:

Esta teoría representa un modelo más elaborado para explicar la formación del enlace metálico; se basa en la teoría de los orbitales moleculares. Esta teoría mantiene que cuando dos átomos enlazan, los orbitales de la capa de valencia se combinan para formar dos orbitales nuevos que pertenecen a toda la molécula, uno que se denomina enlazante (de menor energía) y otro antienlazante (de mayor energía). Si se combinasen 3 átomos se formarían 3 orbitales moleculares, con una diferencia de energía  entre ellos menor que en el caso anterior. En general, cuando se combinan N orbitales, de otros tantos átomos, se obtienen N orbitales moleculares de energía muy próxima entre sí, constituyendo lo que se llama una "banda"
En los metales existe un número muy grande de orbitales atómicos para formar enlaces deslocalizados que pertenezcan a toda la red metálica (como si fuese una gran molécula). Como el número de orbitales moleculares es muy grande forman una banda en la que los niveles de energía, como se ha dicho anteriormente, están muy próximos. Teoría de bandas
En los metales se forman dos bandas. Una en la que se encuentran los electrones de la capa de valencia que se denomina "banda de valencia" y otra que se llama "banda de conducción" que es la primera capa vacía.
En los metales, la banda de valencia está llena o parcialmente llena; pero en estas sustancias, la diferencia energética entre la banda de valencia y la de conducción es nula; es decir están solapadas. Por ello, tanto si la banda de valencia está total o parcialmente llena, los electrones pueden moverse a lo largo de los orbitales vacios y conducir la corriente eléctrica al aplicar una diferencia de potencial.En el caso de los aislantes la banda de valencia está completa y la de conducción vacía; pero a diferencia de los metales, no sólo no solapan sino que además hay una importante diferencia de energía entre una y otra (hay una zona prohibida) por lo que no pueden producirse saltos electrónicos de una a otra. Es decir, los electrones no gozan de la movilidad que tienen en los metales y, por ello, estas sustancias no conducen la corriente eléctrica.
Un caso intermedio lo constituyen los semiconductores, en el caso de las sustancias de este tipo, la banda de valencia también está llena y hay una separación entre las dos bandas, pero la zona prohibida no es tan grande, energéticamente hablando, y algunos electrones pueden saltar a la banda de conducción. Estos electrones y los huecos dejados en la banda de valencia permiten que haya cierta conductividad eléctrica. La conductividad en los semiconductores aumenta con la temperatura, ya que se facilitan los saltos de los electrones a la banda de conducción. Son ejemplos de semiconductores: Ge, Si, GaAs y InSb.

Propiedades de los metales:

  • A excepción del mercurio, los metales puros son sólidos a temperatura ambiente. No obstante, sus puntos de fusión son muy variables, aunque generalmente altos.
  • Son buenos conductores de la electricidad y del calor.
  • Presentan un brillo característico.
  • Son dúctiles y maleables. Esto es debido a la no direccionalidad del enlace metálico y a que los "restos positivos"  son todos similares, con lo que cualquier tracción no modifica la estructura de la red metálica, no apareciendo repulsiones internas.
  • Presentan el llamado "efecto fotoeléctrico"; es decir, cuando son sometidos a una radiación de determinada energía, emiten electrones.
  • Se suelen disolver unos en otros formando disoluciones que reciben el nombre de aleaciones

No hay comentarios:

Publicar un comentario