La banda o cinta de Möbius o Moebius (/ˈmøːbjʊs/) es una superficie con una sola cara y un solo borde. Tiene la propiedad matemática de ser un objeto no orientable. También es una superficie reglada. Fue descubierta en forma independiente por los matemáticos alemanes August Ferdinand Möbius y Johann Benedict Listing en1858.
Construcción de una cinta de Möbius
Para construir una cinta de Möbius, se toma una tira de papel y se pegan los extremos dando media vuelta a uno de ellos.
Propiedades
La banda de Möbius posee las siguientes propiedades:
- Es una superficie que sólo posee una cara:
Si se colorea la superficie de una cinta de Möbius, comenzando por la «aparentemente» cara exterior, al final queda coloreada toda la cinta, por tanto, sólo tiene una cara y no tiene sentido hablar de cara interior y cara exterior.
- Tiene sólo un borde:
Se puede comprobar siguiendo el borde con un dedo, apreciando que se alcanza el punto de partida tras haber recorrido la totalidad del borde.
- Es una superficie no orientable:
Si se parte con una pareja de ejes perpendiculares orientados, al desplazarse paralelamente a lo largo de la cinta, se llegará al punto de partida con la orientación invertida. Una persona que se deslizara «tumbada» sobre una banda de Möbius, mirando hacia la derecha, al recorrer una vuelta completa aparecerá mirando hacia la izquierda.
- Otras propiedades:
Si se corta una cinta de Möbius a lo largo, se obtienen dos resultados diferentes, según dónde se efectúe el corte.
Si el corte se realiza en la mitad exacta del ancho de la cinta, se obtiene una banda más larga pero con dos vueltas; y si a esta banda se la vuelve a cortar a lo largo por el centro de su ancho, se obtienen otras dos bandas entrelazadas. A medida que se van cortando a lo largo de cada una, se siguen obteniendo más bandas entrelazadas.1
Si el corte no se realiza en la mitad exacta del ancho de la cinta, sino a cualquier otra distancia fija del borde, se obtienen dos cintas entrelazadas diferentes: una de idéntica longitud a la original y otra con el doble de longitud.
Esta forma geométrica se utiliza frecuentemente como ejemplo en topología.
Geometría
Una forma de representar la banda de Möbius (cerrada y con frontera) como un subconjunto de es mediante la parametrización:
donde y .
Representa una banda doble de Möbius de ancho unitario, cuya circunferencia exterior tiene radio unitario y se encuentra en el plano coordenado x-y centrada en . El parámetro u recorre la banda longitudinalmente, mientras v se desplaza de un punto a otro del borde, cruzando transversalmente la circunferencia central.
Con la parametrización anterior podemos obtener su curvatura gaussiana la cual es:
En coordenadas cilíndricas , se puede representar una versión sin frontera (abierta) de la banda de Möbius mediante la ecuación:
Topología
Topológicamente, la banda de Möbius puede definirse como el cuadrado que tiene sus aristas superior e inferior identificadas (topología cociente) por la relación para , como en el diagrama que se muestra en la figura de la derecha.
La banda de Möbius es una variedad bidimensional (es decir, una superficie). Es un ejemplo estándar de una superficie noorientable. La banda de Möbius es un ejemplo elemental -también- para ilustrar el concepto matemático de fibrado topológico.
Como objeto topológico, la banda de Möbius también es considerada como el espacio total de un fibrado no trivial teniendo como base el círculo y fibra un intervalo, i.e.
El contraste con el fibrado trivial es agradable pues se sabe que sólo hay dos de estos fibrados E
Es decir, y son todos los I-fibrados sobre la circunferencia.
Objetos relacionados
Análoga a la banda de Möbius es la botella de Klein, pues también tiene sólo una superficie, donde no se puede diferenciar «fuera» de «dentro».
Esto último significa que mientras la banda se encaja (embedding) en , la botella no.
La banda de Möbius en el arte
Johann Sebastian Bach compuso un canon cuya partitura, al ejecutarse, guarda semejanza con la forma de una banda de Möbius.2
El artista M. C. Escher utilizó la banda de Möbius como motivo principal en diversas obras.3
El libro de cuentos Queremos tanto a Glenda, del escritor argentino Julio Cortázar, publicado en 1980, cuenta con una composición titulada Anillo de Moebius.4
El 17 de octubre de 1996, se estrenó la película Moebius,5 6 realizada en Argentina. Dicha película hace referencia a la teoría de la cinta que lleva el mismo nombre, aplicada a una supuesta red de subterráneos de la Ciudad de Buenos Aires ampliada. Se basa en un cuento de A. J. Deutsch, A Subway Named Moebius (1950).
Símbolos gráficos, logotipos y emblemas
El símbolo gráfico internacional de reciclaje y los de otras actividades similares, están basados en la imagen de la banda de Möbius.
Los partidos humanistas afiliados a la Internacional Humanista utilizan como logotipo un símbolo gráfico basado en la banda de Möbius.7
La Banda de Moebius
Uno de los objetos matemáticos más famosos dentro y fuera de la propia matemática
Una superficie ordinaria tiene dos caras. Esto se aplica a las superficies cerradas como la esfera y el toro, y a las superficies con contornos curvos, como un disco o un toro del que se haya quitado un trozo.
Las dos caras de una superficie tal, podrían pintarse con colores diferentes para distinguirlas.
Si la superficie es cerrada, los dos colores nunca se juntan.
Si la superficie tiene límites curvos, los dos colores se encuentran solamente a lo largo de estas curvas.
Un bicho que se arrastrara sobre tal superficie y tuviera prohibido cruzar las curvas límites, si existen, siempre quedaría en la misma cara.
A. F. Möbius hizo el sorprendente descubrimiento de que existen superficies con una sola cara.
La mas simple de estas superficies es la llamada banda de Möbius, formada tomando una larga tira rectangular de papel y uniendo sus extremos después de darle media vuelta.
Un bicho que se arrastrara sobre esta superficie, andando siempre por la parte media de la tira, llegaría a su posición original en el lado inferior, como se aprecia en el dibujo del artista gráfico M. C. Escher (1898-1972)
Uno de los objetos matemáticos más famosos dentro y fuera de la propia matemática
Una superficie ordinaria tiene dos caras. Esto se aplica a las superficies cerradas como la esfera y el toro, y a las superficies con contornos curvos, como un disco o un toro del que se haya quitado un trozo.
Las dos caras de una superficie tal, podrían pintarse con colores diferentes para distinguirlas.
Si la superficie es cerrada, los dos colores nunca se juntan.
Si la superficie tiene límites curvos, los dos colores se encuentran solamente a lo largo de estas curvas.
Un bicho que se arrastrara sobre tal superficie y tuviera prohibido cruzar las curvas límites, si existen, siempre quedaría en la misma cara.
A. F. Möbius hizo el sorprendente descubrimiento de que existen superficies con una sola cara.
La mas simple de estas superficies es la llamada banda de Möbius, formada tomando una larga tira rectangular de papel y uniendo sus extremos después de darle media vuelta.
Un bicho que se arrastrara sobre esta superficie, andando siempre por la parte media de la tira, llegaría a su posición original en el lado inferior, como se aprecia en el dibujo del artista gráfico M. C. Escher (1898-1972)
Cualquiera que se comprometiera a pintar una cara de la banda de Möbius podría hacerlo introduciendo toda la tira en un bote de pintura.
Otra propiedad curiosa de la banda de Möbius es que su contorno está formado por una curva simple cerrada.
La superficie ordinaria de dos lados, formada uniendo los extremos de un rectángulo sin retorcerlo, tiene dos contornos curvos distintos.
Si esta última tira se corta a lo largo de la línea central, se rompe en dos tiras distintas de la misma clase. Pero si se corta la banda de Möbius a lo largo de esta línea, encontramos que queda de una sola pieza.
Resulta difícil, para cualquiera que no esté familiarizado con la banda de Möbius, predecir este comportamiento, tan contrario a la intuición de lo que "debería" suceder.
Si la superficie que resulta de cortar la banda de Möbius a lo largo de su línea media se corta otra vez a lo largo de dicha línea media, se forman dos tiras, separadas pero entrelazadas.
Es fascinante jugar con tales tiras, cortándolas de parte a parte a lo largo de líneas paralelas al contorno a distancias de 1/2, 1/3, etc.
Ciertamente, la banda de Möbius merece un lugar en la instrucción geométrica elemental.
Otra propiedad curiosa de la banda de Möbius es que su contorno está formado por una curva simple cerrada.
La superficie ordinaria de dos lados, formada uniendo los extremos de un rectángulo sin retorcerlo, tiene dos contornos curvos distintos.
Si esta última tira se corta a lo largo de la línea central, se rompe en dos tiras distintas de la misma clase. Pero si se corta la banda de Möbius a lo largo de esta línea, encontramos que queda de una sola pieza.
Resulta difícil, para cualquiera que no esté familiarizado con la banda de Möbius, predecir este comportamiento, tan contrario a la intuición de lo que "debería" suceder.
Si la superficie que resulta de cortar la banda de Möbius a lo largo de su línea media se corta otra vez a lo largo de dicha línea media, se forman dos tiras, separadas pero entrelazadas.
Es fascinante jugar con tales tiras, cortándolas de parte a parte a lo largo de líneas paralelas al contorno a distancias de 1/2, 1/3, etc.
Ciertamente, la banda de Möbius merece un lugar en la instrucción geométrica elemental.
botella de Klein es una superficie no orientable abierta cuya característica de Euler es igual a 0 ; no tiene interior ni exterior. Otros objetos no-orientables relacionados son la banda de Möbius y el plano proyectivo real. Mientras que una banda de Möbius es una superficie con borde, una botella de Klein no tiene borde. Tampoco lo tiene una esfera, aunque ésta sí es orientable.
La botella de Klein fue descrita por primera vez en 1882 por el matemático alemán Felix Klein. El nombre original del objeto no fue el de botella de Klein (en alemán Kleinsche Flasche), sino el de superficie de Klein (en alemán Kleinsche Fläche). El traductor de la primera referencia al objeto del alemán al inglés confundió las palabras. Como la apariencia de la representación tridimensional recuerda a una botella, casi nadie se dio cuenta del error.
Construcción
Comenzamos con un cuadrado, y pegamos los bordes coloreados en el diagrama siguiente, de modo que las flechas coincidan. Más formalmente, la botella de Klein es el cociente del cuadrado [0,1] × [0,1] con sus bordes identificados por la relación (0, y) ~ (1, y) para 0 ≤ y ≤ 1, y (x, 0) ~ (1 − x, 1) para 0 ≤ x ≤ 1:
Este cuadrado es el polígono fundamental de la botella de Klein.
Nótese que éste es un pegado "abstracto" en el sentido de que, al tratar de hacerlo en tres dimensiones, resulta una botella de Klein que se autointerseca. La botella de Klein, propiamente dicha, no tiene autointersecciones. No obstante, hay un modo de visualizar la botella de Klein como figura en cuatro dimensiones.
Para ello, pegamos las flechas rojas del cuadrado, (lados derecho e izquierdo) resultando un cilindro. Para pegar los extremos de manera que las flechas de los círculos coincidan, pasamos un extremo por el lado del cilindro. Nótese que esto crea una autointersección circular. Esta es una inmersión de la botella de Klein en tres dimensiones.
Añadiendo una cuarta dimensión al espacio tridimensional, conseguimos que la botella pase a través de sí misma sin necesidad de un agujero. Para ello empujamos suavemente un trozo de tubo que contenga la intersección fuera del espacio tridimensional original. Una analogía útil es considerar una curva que se autointerseca en el plano; las intersecciones se pueden eliminar levantando una línea fuera del mismo.
Esta inmersión es útil para visualizar muchas propiedades de la botella de Klein. Por ejemplo, no tiene borde (donde la superficie se detenga abruptamente), y no es orientable, al tener su inmersión una sola cara.
Cono fibrado
Esta superficie (simbolizada por ) puede considerarse como el espacio total de un fibrado (no trivial) sobre el círculo donde la fibra es también un círculo, i.e. . En contraste el toro también es un fibrado, pero es trivial, esto es .
Sección
Seccionando una botella de Klein en dos mitades a lo largo de su plano de simetría resultan dos bandas de Möbius, cada una imagen especular de la otra. Una de ellas es la imagen de la derecha. Recuerde que la intersección de la imagen no está realmente allí. De hecho, también es posible cortar la botella de Klein en una única banda de Möbius.
Otro concepto con el mismo nombre
En la geometría algebraica, una superficie de Klein, que se diferencia de la botella de Klein, es el similar de una superficie de Riemann en el sentido de que una superficie de Klein admite una estructura di-analítica, es decir una estructura analítica que adiciona una posible función de transición a una estructura analítica -consistente en la conjugación compleja- determina una que es anti-analítica.
No hay comentarios:
Publicar un comentario