jueves, 28 de mayo de 2015

Geografía


Cartografía

El principio de las curvas de nivel.
Representación digital de perfil 3D con curvas de nivel.
Una curva de nivel es aquella línea que en un mapa une todos los puntos que tienen igualdad de condiciones y de altura. Las curvas de nivel suelen imprimirse en los mapas en color siena para el terreno y en azul para los glaciares y las profundidades marinas. La impresión del relieve suele acentuarse dando un sombreado que simule las sombras que produciría el relieve con una iluminación procedente del Norte o del Noroeste. En los mapas murales, las superficies comprendidas entre dos curvas de nivel convenidas se imprimen con determinadas tintas convencionales (tintas hipsométricas). Por ejemplo: verde oscuro para las depresiones situadas por debajo del nivel del mar, verdes cada vez más claros para las altitudes medias, y sienas cada vez más intensos para las grandes altitudes, reservando el rojo o violeta para las mayores cumbres de la tierra.1
En Geodesia, es cada una de las curvas de nivel que materializa una sección horizontal de relieverepresentado. La equidistancia, diferencia de altitud entre dos curvas sucesivas, es constante y su valor depende de la escala del mapa y de la importancia del relieve.
En Oceanografía la isóbata es una curva que se utiliza para la representación cartográfica de los puntos de igual profundidad en el océano y en el mar, así como en lagos de grandes dimensiones.
Un ejemplo de curvas de nivel.



CURVAS DE NIVEL
Se denominan curvas de nivel a las líneas que marcadas sobre el terreno desarrollan una trayectoria que es horizontal. Por lo tanto podemos definir que una línea de nivel representa la intersección de una superficie de nivel con el terreno. En un plano las curvas de nivel se dibujan para representar intervalos de altura que son equidistantes sobre un plano de referencia.
Esta diferencia de altura entre curvas recibe la denominación de “equidistancia” 
De la definición de las curvas podemos citar las siguientes características:
1. Las curvas de nivel no se cruzan entre si.
2. Deben ser líneas cerradas, aunque esto no suceda dentro de las líneas del dibujo.
3. Cuando se acercan entre si indican un declive mas pronunciado y viceversa.
4. La dirección de máxima pendiente del terreno queda en el ángulo recto con la curva de nivel
TIPOS DE CURVA DE NIVEL.
Curva clinográfica: Diagrama de curvas que representa el valor medio de las pendientes en los diferentes puntos de un terreno en función de las alturas correspondientes.
Curva de configuración: Cada una de las líneas utilizadas para dar una idea aproximada de las formas del relieve sin indicación numérica de altitud ya que no tienen el soporte de las medidas precisas.
Curva de depresión: Curva de nivel que mediante líneas discontinuas o pequeñas normales es utilizada para señalar las áreas de depresión topográfica.
Curva de nivel: Línea que, en un mapa o plano, une todos los puntos de igual distancia vertical, altitud o cota. Sinónimo: isohipsa.
Curva de pendiente general: Diagrama de curvas que representa la inclinación de un terreno a partir de las distancias entre las curvas de nivel.
Curva hipsométrica: Diagrama de curvas utilizado para indicar la proporción de superficie con relación a la altitud. Sinónimo complementario: curva hipsográfica. Nota: El eje vertical representa las altitudes y el eje horizontal las superficies o sus porcentajes de superficie.
Curva intercalada: Curva de nivel que se añade entre dos curvas de nivel normales cuando la separación entre éstas es muy grande para una representación cartográfica clara. Nota: Se suele representar con una línea más fina o discontinua.
Curva maestra: Curva de nivel en la que las cotas de la misma son múltiples de la equidistancia.
MARCACIÓN DE UNA CURVA DE NIVEL
El relieve de la superficie terrestre se suele representar métricamente sobre un plano a través de las curvas de nivel, unas isolíneas que unen puntos situados a la misma altitud y que se trazan generalmente con un intervalo determinado y equidistante para todo el terreno a cartografiar. Una de cada cuatro o cinco curvas se dibuja con un mayor grosor y se rotula su altitud correspondiente; son las llamadas curvas maestras y, entre ellas, se describen las curvas de nivel intermedias. Actualmente, las curvas se trazan a partir de las fotografías aéreas, consiguiendo una precisión mucho mayor que cuando tenían que delinearse en el campo con la ayuda de una red de cotas. A pesar de que las curvas de nivel no proporcionan una imagen visual del relieve tan clara como la técnica del sombreado, su análisis facilita tal cantidad de información que hace que sea el método más útil de representación del relieve en los mapas topográficos.
Curvas de nivel, líneas que, en un mapa, unen puntos de la misma altitud, por encima o por debajo de una superficie de referencia, que generalmente coincide con la línea del nivel del mar, y tiene el fin de mostrar el relieve de un terreno. Las curvas de nivel son uno de los variados métodos que se utilizan para reflejar la forma tridimensional de la superficie terrestre en un mapa bidimensional. En los modernos mapas topográficos es muy frecuente su utilización, ya que proporcionan información cuantitativa sobre el relieve. Sin embargo, a menudo se combinan con métodos más cualitativos como el colorear zonas o sombrear colinas para facilitar la lectura del mapa. El espaciado de las curvas de nivel depende del intervalo de curvas de nivel seleccionado y de la pendiente del terreno: cuanto más empinada sea la pendiente, más próximas entre sí aparecerán las curvas de nivel en cualquier intervalo de curvas o escala del mapa. De este modo, los mapas con curvas de nivel proporcionan una impresión gráfica de la forma, inclinación y altitud del terreno. Las curvas de nivel pueden construirse interpolando una serie de puntos de altitud conocida o a partir de la medición en el terreno, utilizando la técnica de la nivelación. Sin embargo, los mapas de curvas de nivel más modernos se realizan utilizando la fotogrametría aérea, la ciencia con la que se pueden obtener mediciones a partir de pares estereoscópicos de fotografías aéreas. El término isolínea puede utilizarse cuando el principio de las curvas de nivel se aplica a la realización de mapas de otros tipos de datos cuantitativos, distribuidos de forma continua, pero, en estos casos, suele preferirse utilizar términos más especializados con el prefijo iso- (que significa igual), como isobatas para curvas de nivel submarinas, o isobaras para las líneas que unen puntos que tienen la misma presión atmosférica.
El operador comienza a nivelar partiendo de una cota conocida, efectuando una nivelación compuesta, desde la estación de arranque debe marcar los puntos del terreno que tienen igual lectura de mira. Cuando cambia la estación tomara como diferencia el ultimo punto de la estación anterior y efectuada la lectura de mira se procede a buscar sobre el terreno puntos de igual cota que proporcionen la misma lectura y así hasta terminar con esa curva. De esta manera se marca sobre el terreno una línea de nivel, es decir que no sube ni baja, para esto se van colocando estacas de madera las que demarcan su trayectoria.
DESARROLLO
El trazado de una curva de nivel en el terreno, se puede realizar con un nivel óptico, un teodolito, con una manguera, etc. Nosotros tomaremos el caso del nivel óptico, ya que con él, hemos realizado las prácticas con el profesor.
Para emplear el nivel necesitamos una “mira parlante”, sobre la cual realizaremos la lectura. El nivel se afirmará sobre el terreno, sobre un trípode el cual tiene en la parte superior un tipo de rosca para que el nivel sea ajustado. El nivel tiene dos burbujas, una en la parte superior y otra en el costado, las cuales sirven para que el nivel esté nivelado con respecto al suelo.
También tiene una lente a través de la cual realizaremos la lectura de mira. Tiene una perilla al costado que aclara la imagen que tendremos de la mira parlante. Una perilla permite acercar o alejar la imagen que tengamos. En la parte inferior del nivel, hay una especie de rosca para girar el nivel hacia una dirección determinada, la cuál nos permite medir ángulos, para encuadrar una plantación. El operador tendrá que tener en cuenta que los números de la mira parlante están al revés, ya que al mirar por la lente del nivel se invertirán los mismos. Los niveles ópticos sirven para distintos fines como por ejemplo: La marcación para una plantación determinada, para encuadrarla y determinar así sus ángulos etc.
PASOS A SEGUIR PARA LA MARCACIÓN DE UNA CURVA DE NIVEL
Para hacer la marcación de una curva de nivel, se procede:
1º Se debe determinar la zona de desagüe.
2º Se elige la zona de mayor pendiente, debido a que este lugar es el de mayor deterioro, por la acción directa de las lluvias y se saca la pendiente promedio, para ello9 se recurre a una tabla de intervalos verticales y horizontales.

El intervalo vertical es la diferencia de nivel que existe entre una curva y otra.
El intervalo horizontal es la distancia que existe entre una curva y otra.
3º Se realiza la tabla de intervalos verticales y horizontales.
4º Se hace la marcación de arranque, que es el lugar donde nace la curva de nivel, cuya marcación se realiza por el lado opuesto de la zona de desagüe.
5º Se realiza la primer lectura para saber en que lugar estamos, operando a este valor se le suma 3cm la que comúnmente se denomina pendiente del 3x mil y se desplaza 10m cortando la pendiente y así sucesivamente.
6º Suavización de las curvas y se hace para que la curva sea mas o menos proporcional.
7º Es la construcción de camellones.
La curva de nivel evita que los suelos se deterioren y de esta forma se pueden aprovechar los terrenos con mucha pendiente.





Curvas de nivel

El sistema de representación de curvas de nivel consiste en cortar la superficie del terreno mediante un conjunto de planos paralelos entre sí, separados una cierta distancia unos de otros. Cada plano corta al terreno formando una figura (plana) que recibe el nombre de curva de nivel isohipsa. La proyección de todas estas curvas de nivel  sobre un plano común (el mapa) da lugar a la representación buscada.
En la figura se ve la construcción para representar mediante curvas de nivel una montaña. La montaña es cortada  mediante planos paralelos separados una cierta distancia que se llama equidistancia entre curvas de nivel.
Planos equidistantes formando curvas de nivel
Planos equidistantes formando curvas de nivel
Las intersecciones de los planos con la superficie de la montaña determinan un conjunto de secciones que son  proyectadas sobre el plano inferior, que representa al mapa. El resultado final que observaremos sobre el mapa es algo como esto:
Cortes de los planos proyectados sobre el papel
Cortes de los planos proyectados sobre el papel
Al observar la figura nos puede quedar la duda sobre qué secciones están por encima de otras. Es decir, ¿está realmente la sección roja por encima de la amarilla y de la verde?
El problema anterior se resuelve fácilmente si para cada sección indicamos su altura con respecto a un plano de referencia, y como tal plano se toma el nivel del mar. De este modo la sección verde se ha obtenido cortando la  montaña mediante un plano paralelo al nivel del mar y una altura (o nivel) de 100 metros con respecto a aquél. La  sección amarilla se ha obtenido mediante la intersección con un plano a 200 metros sobre el nivel del mar (s.n.m.). Y la sección roja con un plano a 300 metros s.n.m. Para cada curva de nivel indicaremos esa altitud y le denominaremos cota.
La equidistancia entre curvas de nivel se puede deducir ahora con facilidad para el ejemplo dado: 100 metros.
En la siguiente figura se ve como se efectúa la construcción de curvas de nivel de una depresión, que es el caso opuesto al monte de la figura anterior.
Cortes de los planos proyectados sobre una depresión
Cortes de los planos proyectados sobre una depresión
Puede observarse que el procedimiento a seguir es exactamente el mismo y que se obtiene la misma representación.
Curvas de nivel de la depresión
Curvas de nivel de la depresión
Sin embargo, la acotación de las curvas de nivel no dejan lugar a dudas. Podemos observar que las curvas de mayor cota encierran a las curvas de cota menor, señal inequívoca de una depresión en el terreno. En un monte ocurre justo lo contrario, las curvas de nivel de menor cota encierran a las de cota mayor.
Las curvas de nivel verifican las siguientes premisas de manera general:
  • Las curvas de nivel no se cortan ni se cruzan (sólo ocurre ésto cuando queremos representar una cueva o un saliente de roca).
  • Las curvas de nivel se acumulan en las laderas más abruptas y están más espaciadas en las laderas más suaves.
  • La línea de máxima pendiente entre dos curvas de nivel es aquella que las une mediante la distancia más corta.
En la siguiente figura tenemos dos itinerarios para alcanzar una cumbre desde dos puntos A y B. Desde el punto A (itinerario rojo) es más largo que desde el punto B (recorrido azul). Sin embargo, el itinerario azul es mucho más duro ya que las curvas de nivel se hallan más apretadas o, si se prefiere, el camino atraviesa las curvas de nivel en menos espacio.
Diferentes itinerarios a cumbre
Diferentes itinerarios a cumbre

Equidistancia entre curvas de nivel

La distancia entre los diversos planos imaginarios que cortan el terreno es siempre la misma para un mapa dado y se llama equidistancia entre curvas de nivel.
En el plano anterior la equidistancia entre curvas de nivel es de 25 metros. Obsérvese que se usan dos colores para  poder contar mejor las curvas de nivel. Así las líneas más oscuras aparecen cada 50 metros, y entre dos de ellas consecutivas aparece una línea más clara. En cualquier caso entre dos curvas de nivel tendremos una diferencia de  altitud de 25 metros. A las líneas más oscuras se les suele llamar curvas de nivel maestras.
Equidistancia entre curvas de nivel
Equidistancia entre curvas de nivel
En el nuevo plano tenemos un mapa con equidistancia entre curvas de nivel de 20 metros. Las curvas maestras  aparecen en tono oscuro cada 100 metros. Entre dos curvas maestras consecutivas tenemos, por tanto, cuatro curvas de nivel en tono más claro. Entre dos curvas cualesquiera existe una diferencia de nivel de 20 metros.

No hay comentarios:

Publicar un comentario