domingo, 17 de mayo de 2015

Geología


Procesos geológicos

La cristalización es un proceso por el cual a partir de un gas, un líquido o una disolución, los ionesátomos o moléculas establecenenlaces hasta formar una red cristalina, la unidad básica de un cristal. La cristalización se emplea con bastante frecuencia en Químicapara purificar una sustancia sólida.- ............................................................:http://es.wikipedia.org/w/index.php?title=Especial:Libro&bookcmd=download&collection_id=477a5bc2ad4bac9874315022cf0092eda4528187&writer=rdf2latex&return_to=Cristalizaci%C3%B3n


Cristalización. Técnica de separación de disoluciones en la que las condiciones se ajustan de tal forma que sólo puede cristalizar alguno de los solutos permaneciendo los otros en la disolución. Esta operación se utiliza con frecuencia en la industria para la purificación de las sustancias que, generalmente, se obtienen acompañadas de impurezas.

Proceso de cristalización

En este proceso, una sustancia sólida con una cantidad muy pequeña de impurezas se disuelve en un volumen mínimo de disolvente (caliente si la solubilidad de la sustancia que se pretende purificar aumenta con la temperatura). A continuación la disolución se deja enfriar muy lentamente, de manera que los cristales que se separen sean de la sustancia pura, y se procede a su filtración.
El filtrado, que contiene todas las impurezas, se suele desechar.Para que la cristalización fraccionada sea un método de separación apropiado, la sustancia que se va a purificar debe ser mucho más soluble que las impurezas en las condiciones de cristalización, y la cantidad de impurezas debe ser relativamente pequeña.Comúnmente las impurezas están presentes en concentraciones bajas y ellas regresan a la solución aun cuando la solución se enfría. Si se necesita una pureza extrema del compuesto, los cristales filtrados pueden ser sujetos a re-cristalización y, naturalmente, en cada cristalización resulta una pérdida del soluto deseado que se queda en el líquido madre junto con las impurezas.El solvente ideal para la cristalización de un compuesto particular es aquel que:
  • No reacciona con el compuesto.
  • Hierve a temperatura por debajo del punto de fusión del compuesto.
  • Disuelve gran cantidad del compuesto cuando esta caliente.
  • Disuelve una pequeña cantidad de compuesto cuando esta frío.
  • Es moderadamente volátil y los cristales pueden ser secados rápidamente.
  • No es tóxico, no es inflamable y no es caro las impurezas deberían ser insolubles en el solvente para que puedan ser separadas por filtración.

Pureza del producto

Un cristal en si es muy puro. Sin embargo, cuando se separa del magma final la cosecha de cristales, sobre todo si se trata de agregados cristalinos, la masa de sólidos retiene una cantidad considerable de aguas madres. Por consiguiente, si el producto se seca directamente, se produce una contaminación que depende de la cantidad y del grado de impureza de las aguas madres retenidas por los cristales.

Equilibrio y rendimientos

En muchos procesos industriales de cristalización los cristales y las aguas madres permanecen en contacto durante el tiempo suficiente para alcanzar el equilibrio, de forma que las aguas madres están saturadas a la temperatura final del proceso. El rendimiento de la cristalización se puede calcular a partir de la concentración de la solución original y la solubilidad a la temperatura final. Si se produce una evaporación apreciable durante el proceso es preciso tenerla en cuenta.
Cuando la velocidad de crecimiento de los cristales es pequeña, se necesita un tiempo relativamente grande para alcanzar el equilibrio, sobre todo cuando la solución es viscosa o cuando los cristales se depositan en el fondo del cristalizador, de forma que la superficie de cristales expuesta a la solución sobresaturada es pequeña. En estos casos, las aguas madres finales pueden contener una considerable sobresaturación y el rendimiento real será menor que el calculado a partir de la curva de solubilidad.
Cuando los cristales son anhidros, el cálculo del rendimiento resulta sencillo, puesto que la fase sólida no contiene disolvente. Si los cristales contienen agua de cristalización es necesario tenerla en cuenta, ya que esta agua no esta disponible para el soluto que permanece en la solución. Los datos de solubilidad s expresan generalmente en partes de masa de material anhidro por ciento partes de masa de disolvente total, o bien en tanto por ciento en masa de soluto anhidro. En estos datos no se tiene en cuanta el agua de cristalización.
La clave para el cálculo de rendimientos de solutos hidratados consiste en expresar todas las masas y concentraciones en función de sal hidratada y agua libre. Como esta última permanece en la fase liquida durante la cristalización, las concentraciones y cantidades basadas en el agua libre se pueden restar para obtener un resultado correcto.

Solubilidad de equilibrio en la cristalización

El equilibrio en la cristalización de cualquier sistema puede ser definido en términos de su curva de solubilidad o saturación y sobresaturación. La curva de sobresaturación difiere de la de solubilidad en que su posición no es solamente una propiedad de el sistema sino también depende de otros factores como el rango de enfriamiento, el grado de agitación y la presencia de partículas extrañas. Sin embargo bajo ciertas condiciones, la curva de sobresaturación para un sistema dado es definible, reproducible, y representa la máxima sobresaturación que el sistema puede tolerar, punto en el cual la nucleación ocurre espontáneamente.
La curva de solubilidad describe el equilibrio entre el soluto y el solvente y representa las condiciones bajo las cuales el soluto cristaliza y el licor madre coexiste en equilibrio termodinámico. Las curvas de saturación y sobresaturación dividen el campo de concentración-temperatura en tres zonas:
  • La región insaturada, a la derecha de la curva de saturación.
  • La región meta estable, entre las dos curvas.
  • La región sobresaturada o lábil, a la izquierda de la curva de sobresaturación. Un típico diagrama de equilibrio en cristalización se muestra en la figura debajo:
De acuerdo a la teoría original de Mier´s, en la región insaturada, los cristales del soluto se disolverán, el crecimiento de los cristales ocurrirá en la zona meta estable, y la nucleación ocurrirá instantáneamente en la zona lábil. Investigaciones subsecuentes encontraron como otros factores afectan a la nucleación además de la sobresaturación.

Crecimiento y propiedades de los cristales

Nucleación

El fenómeno de la nucleación es esencialmente el mismo para la cristalización a partir de una solución, cristalización a partir de un producto fundido, condensación de gotas de niebla en una vapor sobre-enfriado, y generación de burbujas en un liquido sobrecalentado, en todos los casos, la nucleación sproduce como consecuencia de rápidas fluctuaciones locales a escala molecular en una fase homogénea que esta en estado de equilibrio metaestable. Los núcleos cristalinos se pueden formar a partir de moléculas, átomos, o iones. En soluciones acuosas pueden ser hidratados. Debido a sus rápidos movimientos, estas partículas reciben el nombre de unidades cinéticas.
Para un volumen pequeño del orden de 100 oA, la teoría cinética establece que las unidades cinéticas individuales varían grandemente en localización, tiempo, velocidad, energía, y concentración. Los valores, aparentemente estacionarios, de las propiedades intensivas, densidad, concentración y energía, correspondientes a una masa macroscópica de solución, son en realidad valores promediados en el tiempo de fluctuaciones demasiado rápidas y pequeñas para poder ser medidas a escala macroscópica.
Debido a las fluctuaciones, una unidad cinética individual penetra con frecuencia en el campo de fuerza de otra u las dos partículas se unen momentáneamente, lo normal es que se separen inmediatamente, pero, si se mantienen unidas, se le pueden unir sucesivamente otras partículas. Las combinaciones de este tipo reciben el nombre de agregados. La unidad de partículas, de una en una, a un agregado constituye una reacción en cadena que se puede considerar como una seria de reacciones químicas reversibles de acuerdo con el siguiente esquema: donde A1 es la unidad cinética elemental, y el subíndice representa el número de unidades que forman el agregado.
Cuando m es pequeño, un agregado no se comporta como una partícula que forma una nueva fase con una identidad y limite definidos. Al aumentar m, el agregado se puede ya reconocer y recibe el nombre de embrión. La inmensa mayoría de los embriones tienen una vida muy corta, rompiéndose para volver formar agregados o unidades individuales. Sin embargo, dependiendo de la sobresaturación, algunos embriones crecen hasta un tamaño suficiente para alcanzar el equilibrio termodinámico con la solución.
En este caso el embrión recibe el nombre de núcleo. El valor de m para un núcleo esta comprendido en el intervalo de unas pocas unidades a varios centenares. El valor de m para los núcleos de agua líquida es del orden de 80. Los núcleos se encuentran en equilibrio inestable: si pierden unidades se disuelven y si las ganan se transforman en un cristal, la secuencia de etapas en la formación de un cristal es por consiguiente Agregado => embrión => núcleo => cristal.

Velocidad de cristalización

La velocidad de crecimiento de un cristal es conocida como velocidad de cristalización. La cristalización puede ocurrir solamente desde soluciones sobresaturadas. El crecimiento ocurre primero con la formación del núcleo, y luego con su crecimiento gradual. En concentraciones arriba de la sobresaturación, la nucleación es concebida como espontánea, y rápida.
En la región metaestable, la nucleación es causada por un golpe mecánico, o por fricción y una nucleación secundaria puede resultar de el rompimiento de cristales ya formados. Ha sido observado que la velocidad de cristalización se ajusta a la siguiente ecuación: Los valores del exponente m se encuentran en el rango de 2 a 9, pero no ha sido correlacionada como un valor cuantitativo que se pueda estimar. Esta velocidad es media contando el número de cristales formados en periodos determinados de tiempo.
Esta velocidad depende de su superficie instantánea y de la velocidad lineal de la solución, que pasa a la solución así como también de la sobresaturación. Los valores del exponente n se sitúan en el orden de 1.5, pero de nuevo no existe una correlación en el diseño de los cristalizadores que pueda estimarlo. El crecimiento del cristal es un proceso capa por capa y, ya que sólo puede ocurrir en la cara del cristal, es necesario transportar material a la cara, desde la solución.
Debe considerarse la resistencia de difusión al desplazamiento de las moléculas (o iones) hacia la cara creciente del cristal y la resistencia a la integración de estas moléculas a la cara. Caras diferentes pueden tener velocidades de crecimiento distintas y estas se pueden tener velocidades de crecimiento distintas y éstas se pueden alterar en forma selectiva mediante la adición o eliminación de impurezas.

Efecto de las impurezas

El ambiente químico, e.g. la presencia de relativamente bajas concentraciones de sustancias ajenas a las especies a cristalizar, ya sea impurezas, etc, juega un importante papel en la optimización de los sistemas de cristalización. Su papel es muy importante por diversas razones.
La primera, todos los materiales son impuros o contienen trazas de impurezas añadidas durante su procesamiento. La variación aleatoria de las impurezas es un efecto indeseable. Su efecto en las especies a cristalizar debe ser bien conocido, si sobre el sistema de cristalización se desea establecer un control satisfactorio.
La segunda, y la más importante, es posible influenciar la salida y el control del sistema de cristalización, o cambiar las propiedades de los cristales mediante la adición de pequeñas cantidades de aditivos cuidadosamente elegidos. Esto, agregando ciertos tipos y cantidades de aditivos es posible controlar el tamaño de los cristales, la distribución de tamaño del cristal, el hábito del cristal y su pureza. 
El ambiente químico puede ser utilizado apropiadamente para variar:
  • Alterando significativamente la cinética de cristalización y de aquí la distribución de tamaño del cristal.
  • Tener mejor control del cristalizador.
  • Mejorar la calidad del producto y/o el rendimiento, mediante la producción de un cierto tipo de cristal.
  • Producir cristales muy puros de ciertos materiales en los cuales las impurezas sean inaceptables.

Efecto de la temperatura sobre la solubilidad

Disolver en una determinada cantidad de un disolvente a una temperatura especifica. La temperatura afecta la solubilidad de la mayoría de las sustancias. La mayoría de los compuestos iónicos, aunque no en todos, la solubilidad de la sustancia sólida aumenta con la temperatura. Sin embargo no hay una correlación clara entre el signo del Hdisolución y la variación de la solubilidad con la temperatura. Por ejemplo, el proceso de disolución del CaCl2 es exotérmico y el del NH4NO3 es endotérmico. Pero la solubilidad de ambos compuestos aumenta con la temperatura. En general, el efecto de la temperatura sobre la solubilidad debe determinarse de forma experimental.

Cristalización fraccionada

La dependencia de la solubilidad de un sólido respecto de la temperatura varía de manera considerable. Por ejemplo, la solubilidad de NaNO3 aumenta muy rápido con la temperatura, en tanto que la del NaBr casi no cambia. Esta gran variación proporciona una forma para obtener sustancias puras a partir de mezclas. La cristalización fraccionada es la separación de una mezcla de sustancias en sus componentes puros con base en sus diferentes solubilidades. Supongamos que se tiene una muestra de 90 g de KNO3 contaminada con 10 g de NaCl.
Para purificar al primero, se disuelve la mezcla en 100 mL de agua a 60°C y entonces la disolución se enfría de manera gradual hasta 0°C. A esta temperatura las solubilidades de KNO3 y del NaCl son 12.1 g/100 g de H2O y 34.2 g/100 g de H2O respectivamente. Así, se separa de la disolución (90-12) g o 78 g de KNO3, pero todo el NaCl permanecerá disuelto. De esta forma, se puede obtener alrededor del 90% de la cantidad original de KNO3 en forma pura. Los cristales de KNO3 se pueden separar de la disolución por filtración.
Muchos de los compuestos sólidos, inorgánicos y orgánicos, que se utilizan en el laboratorio se purifican mediante la cristalización fraccionada. El método funciona mejor si el compuesto que se va a purificar tiene una curva con una fuerte pendiente, es decir, si es mucho más soluble a altas temperaturas que a bajas temperaturas. De otra manera, una gran parte del compuesto permanecerá disuelto a medida que se enfría la disolución. La cristalización fraccionada también funciona si la cantidad de impurezas en la disolución es relativamente pequeña.





La formación de cristales puede originarse de diferentes maneras, según las características del ambiente donde
tenga lugar:


Solidificación de un magma  Solidificación: Materiales en estado fundido que sufren un descenso en su temperatura produciéndose un cambio de estado. En muchos casos, este proceso no implica un proceso de cristalización, como sucede frecuentemente en las rocas volcánicas (vidrios volcánicos). En las rocas plutónicas, por el contrario, sí tiene lugar la formación de cristales, puesto que, debido al enfriamiento lento, la solidificación se traduce en múltiples cristalizaciones por precipitación de diferentes minerales.
    Granito. En las rocas plutónicas si se produce la cristalización por solidificación.   Estructura interna de un vidrio, no posee orden ni periodicidad.   Obsidiana. Roca volcánica donde la solidificación no conlleva cristalización (vidrio volcánico).
Precipitación de sales a la salida de un fluido hidrotermal en zonas próximas a una dorsal.
Cristalización: Se produce la formación de cristales a partir de la incorporación de las sustancias que componen un fluido, por saturación de alguno de los componentes. Existen dos modalidades:
* Precipitación: Cuando el fluido es un líquido. La causas
  son variadas: pérdida por evaporación del fluido, aumentos   en la concentración (aporte de iones) y variaciones de
  temperatura o presión. Se verifica en todos los ambientes.
 * Sublimación: Cuando el fluido es un gas se produce la
  cristalización directamente al estado sólido. Es el caso
  de las fumarolas volcánicas por la bajada brusca de la
  temperatura.
Fumarola volcánica donde tiene lugar la formación de cristales de azufre por sublimación
Cima del volcán Cumbal (Colombia). El color amarillo es debido a la sublimación de azufre.

Granate de una roca metamórfica que ha crecido por recristalización de otros minerales.
Recristalización: Se forma un nuevo cristal por reorganización interna de los componentes de un cristal preexistente. Al variar las condiciones del medio (presión, temperatura o composición), un cristal puede desestabilizarse y empezar a variar su estructura o su composición por difusión en estado sólido. Son muy frecuentes en el ambiente metamórfico pero se verifican también en la meteorización y la diagénesis.
Actividad 7

No hay comentarios:

Publicar un comentario