sábado, 2 de mayo de 2015

biolgía celular



Citoesqueleto

Los microtúbulos son estructuras tubulares de las células, de 25 nm de diámetro exterior y unos 12 nm de diámetro interior, con longitudes que varían entre unos pocos nanómetros a micrómetros, que se originan en los centros organizadores de microtúbulos y que se extienden a lo largo de todo el citoplasma. Se hallan en las células eucariotas y están formadas por la polimerización de un dímero de dos proteínas globulares, la alfa y la beta tubulina.- .......................................:http://es.wikipedia.org/w/index.php?title=Especial:Libro&bookcmd=download&collection_id=cf9c966fac35a11dab83791a52cfebed41d09b1b&writer=rdf2latex&return_to=Microt%C3%BAbulo


Las diversas actividades del citoesqueleto dependen de tres tipos principales de filamentos constituídos por proteínas:
  • los microtúbulos
  • los microfilamentos de actina
  • los microfilamentos intermedios
Cada una de estas estructuras está formada por diferentes monómeros de proteínas y puede adoptar diversas disposiciones espaciales según la naturaleza de otras proteínas asociadas. Algunas de estas, por ejemplo, unen los microfilamentos a la membrana, otras sirven para anclar las proteínas de membrana y otras interaccionan con las primeras para crear movimientos, de los cuales los más estudiados son la contracción muscular y el movimiento ciliar.


MICROTUBULOS: ESTRUCTURA Y FUNCION

Los microtúbulos están presentes en todas las células eucariotas desde las amebas hasta los animales, salvando contadas excepciones como los eritrocitos humanos. Son las fibras de mayor tamaño presentes en el citosol, con un diámetro aproximado de 24 nm y usualmente se agrupan formando haces en los que los diferentes túbulos se unen mediante puentes para conferirles rigidez y solidez.

Funciones en las diferentes células

Los haces de microtúbulos (*) adoptan diversas formas y aspectos y tienen funciones variadas:
  • En los eritrocitos de vertebrados inferiores, un anillo de microtúbulos se extiende justamente debajo de la membrana. En estas células, la función sería de la mantener la forma de las células, ya que esta se mantiene incluso si la membrana se solubiliza con detergentes
  • En las neuronas, los microtúbulos y los filamentos intermedios se extienden a lo largo de los axones y dendritas desde el cuerpo de la célula hasta su terminal
  • En fibroblastos no mitóticos cultivados in vitro , los microtúbulos forman una compleja red citoplasmática que cruza toda la célula. Los microtúbulos están concentrados cerca del núcleo en unas áreas llamadas "centros de organización microtubular, COMTs" o centrosomas. En el centro de estas áreas se encuentra el centriolo. Durante la mitosis, el centriolo y los COMTs forman los polos del huso mitótico.
    Durante la mitosis, esta red microtubular desaparece y se forma un huso. Los túbulos utilizados para formar dichos husos provienen muy probablemente de los microtúbulos existentes en la interfase
  • Los microtúbulos son igualmente esenciales para la generación de movimientos en cilios y flagelos
Algunos sistemas de microtúbulos, como los presentes en cilios y flagelos, son estructuras permanentes y persisten a lo largo de su crecimiento y división (con algunas excepciones como los protozoos que reabsorben el flagelo antes de la división). Otros sistema de microtúbulos, en particular los que constituyen los husos mitóticos, se forman por polimerización durante una a las fases de la división celular y se despolimerizan en otra fase.Muchos sistemas de microtúbulos constituyen estructuras lábiles, que pueden ser despolimerizados en determinadas circunstancias. Esta labilidad es esencial para su función. Por ejemplo, la sustancia antimitótica colchicina (*) despolimeriza los microtúbulos al unirse a la tubulina. Si se elimina la colchicina por lavado de la preparación, se reconstituyen los microtúbulos.

Composición de los microtúbulos

Todos los microtúbulos están constituídos según el mismo principio: el corte transversal de un microtúbulo (*) revela que está constituído por 13 subunidades de 4 a 5 nm de diámetro con un hueco central. Los microtúbulos están compuestos por dos tipos de subunidades de proteínas: la a-tubulina y la b-tubulina una de las cuales tiene un peso molecular de 55.000. La pared del microtúbulo está formada por una matriz helicoidal de las dos subunidades. Hay 13 protofilamentos cada uno de ellos compuestos por dímeros que se extienden paralelamente al eje longitudinal del microtúbulo. Las unidades repetitivas son, pués, heterodímeros y están dispuestos dentro del microtúbulo alineados de cabeza a cola. Esto quiere decir que los microtúbulos tienen una polaridad definida y que los dos extremos no son estructuralmente equivalentesLos microtúbulos se forman por polimerización de los dímeros alfa-beta y, viceversa, cuando los microtúbulos se someten a diversas manipulaciones (p.ej congelación) se disocian en sus respectivos dímeros. Por el contrario, los dímeros no se disocian en sus subunidades a menos de que se añadan agentes desnaturalizantes.
Asociados a las tubulinas, se encuentran además una proteínas minoritarias llamadas proteínas asociadas a los microtúbulos(PAMTs) que desempeñan una función estabilizadora e iniciadora de la reacción de polimerización. Diferentes estructuras microtubulares (husos mitóticos o fibras axonales) contienen diferentes PAMTs
Como se ha indicado anteriormente, los microtúbulos tienen una diferente polaridad porque sus subunidades de tubulina está dispuestas según una orientación específica en el polímero. Si se dejan polimerizar fragmentos purificados de tubulina sobre fragmentos de un axonema ciliar (-fragmentos que actúan como iniciadores o cebadores de la reacción de polimerización) se observa que la adición de dímeros en un extremo (llamado extremo A extremo +) es varias veces más rápida que en el otro extremo (llamado extremo D o extremo -). Igualmente, la despolimerización (o eliminación de subunidades de cada uno de los extremos) también ocurre a diferente velocidad. En condiciones definidas de concentración iónica y de subunidades solubles, se llega a una condición de equilibrio (steady state) en la cual la adición de unidades de dímero es compensada por la pérdida de otras subunidades. En estas condiciones, como la adición tiene lugar preferentemente en la extremo A (+) y la pérdida en el extremo D (-), el microtúbulo funciona como una "cinta transportadora". Un dímero de tubulina incorporado en el extremo másviaja a lo largo del microtúbulo y eventualmente es despolimerizada en el extremo menos.



MICROTUBULOS


citoesqueleto5.jpg


Son un componente del citoesqueleto que tiene un papel organizador interno crucial en todas las células eucariotas, y a algunas también les permiten moverse. Los microtúbulos tienen numerosas funciones, como establecer la disposición espacial de determinados orgánulos, formar un sistema de raíles mediante el cual se pueden transportar vesículas o macromoléculas entre compartimentos celulares, son imprescindibles para la división celular puesto que forman el huso mitótico y son esenciales para la estructura y función de los cilios y de los flagelos.


microtubulos1.jpg
microfotografías que muestran: detalle de un microtúbulo ( arriba ) y la disposición de los mismos en el interior celular ( abajo )

Los microtúbulos son estructuras tubulares de las células, de 25 nm de diámetro exterior y unos 12 nm de diámetro interior, con longitudes que varían entre unos pocos nanómetros a micrómetros, que se originan en los centros organizadores de microtúbulos y que se extienden a lo largo de todo el citoplasma. Se hallan en las células eucariotas y están formadas por la polimerización de un dímero de dos proteínas globulares, la alfa y la beta tubulina.

Los microtúbulos intervienen en diversos procesos celulares que involucran desplazamiento de vesículas de secreción, movimiento de orgánulos, transporte intracelular de sustancias, así como en la división celular (mitosis y meiosis) y que, junto con los microfilamentos y los filamentos intermedios, forman el citoesqueleto. Además, constituyen la estructura interna de los cilios y los flagelos.

Los microtúbulos se nuclean y organizan en los centros organizadores de microtúbulos (COMTs), como pueden ser el centrosoma o los cuerpos basales de los cilios y flagelos. Estos COMTs pueden poseer centríolos o no.

Además de colaborar en el citoesqueleto, los microtúbulos intervienen en el tránsito de vesículas (véase la dineína o la cinesina), en la formación del huso mitótico mediante el cual las células eucariotas segregan sus cromátidas durante la división celular, y en el movimiento de cilios y flagelos.










Estructura

Son tubos largos y relativamente rígidos. Sus paredes están formados por unas subunidades proteicas globulares denominadas tubulinas. Éstas se asocian en dímeros compuestos por dos tipos de tubulinas: α y β. Estas parejas se alinean ordenadamente, mediante enlaces no covalentes, en filas longitudinales que se denominan protofilamentos. Un microtúbulo tipo contiene trece protofilamentos.Cada protofilamento tiene una polaridad estructural: la α-tubulina siempre formará un extremo del protofilamento y la β el otro. Esta polaridad es la misma para todos los protofilamentos de un microtúbulo y por tanto el microtúbulo también es una estructura polarizada. Se denomina extremo menos al extremo donde hay una α-tubulina y má donde está la β-tubulina. Los nuevos dímeros de tubulina se añade con una menor eficacia a la α-tubulina que a la β-tubulina, por lo que el extremo más es el lugar preferente de crecimiento del microtúbulo y predomina la polimerización respecto a las despolimerización. En el extremo menos predomina la despolimerización respecto a la polimerización.


Esquema de la organización de los dímeros de tubulina en un protofilamento que forma parte de un microtúbulo. Nótese que la α-tubulina está orientada hacia el extremo menos y la β-tubulina hacia el extremo más.
Esquema de la organización de los dímeros de tubulina en un protofilamento que forma parte de un microtúbulo. Nótese que la α-tubulina está orientada hacia el extremo menos y la β-tubulina hacia el extremo más.
Por ello los microtúbulos suelen crecer por el extremo más y, si no está protegido, decrecer por el extremo menos. Sin embargo, el extremo más es muy dinámico y en él se suceden procesos de polimerización y despolimerización, algunos tan drásticos que pueden hacer desaparecer por completo al microtúbulo.


Los microtúbulos están continuamente polimerizando y despolimerizando, fundamentalmente en su extremo más. En un fibroblasto típico la mitad de la tubulina disponible está libre en el citosol y la otra mitad formando parte de los microtúbulos. Esta situación es bastante diferente a la de los filamentos intermedios en los que la mayoría de las subunidades están formando parte de dichos filamentos. Hay un ir y venir de dímeros de tubulina entre el citosol y los microtúbulos. Esto es importante para la reordenación del sistema celular de microtúbulos cuando es necesario. Existen sustancias que afectan a la polimerización o despolimerización de los microtúbulos: la colchicina impide la polimerización, mientras que el taxol tiene el efecto contrario, se une fuertemente a los microtúbulos impidiendo su despolimerización.





Vídeo corto, formación de microtubulo.





Función


Organización y movimiento de orgánulos. Los microtúbulos se pueden clasificar en dos grandes grupos: aquellos que son estables, presentes en los cilios y flagelos, y otros más dinámicos y cambiantes que se encuentran en el citoplasma. Aparte del papel de los microtúbulos citoplasmáticos en el movimiento de los cromosomas, mediante la formación del huso mitótico, que se verá más adelante, participan en el movimiento de orgánulos como las mitocondrias, lisosomas, pigmentos, gotas de lípidos. Son también necesarios para dirigir el tráfico vesicular. Cuando se observan células en cultivo con el microscopio, los orgánulos visibles muestran movimientos rápidos en direcciones específicas intercalados con periodos de inactividad. A estos movimientos se les llama saltatorios.


Los microtúbulos son relativamente inertes en cuanto que no interaccionan directamente con los orgánulos. Los desplazamientos de orgánulos son producidos por una serie de proteínas especiales llamadas proteínas motoras. Estas proteínas pertenecen a dos familias: quinesinas y dineínas, las cuales se desplazan por el microtúbulo en direcciones opuestas: las quinesinas hacia el extremo más y las dineínas hacia el extremo menos. Tanto unas como otras tienen dos estructuras globulares y una cola. Las zonas globulares unen ATP e interaccionan con los microtúbulos con una orientación determinada, mientras que las colas se unen a las cargas que han de transportar. La cola es lo que determina qué elemento es el transportable. La hidrólisis del ATP en las zonas globulares provoca el cambio estructural de la proteína y su desplazamiento a lo largo del microtúbulo. Además del transporte, las proteínas motoras también están implicadas en dar forma y localizar en lugares determinados de la célula a orgánulos grandes como el complejo de Golgi y el retículo endoplasmático. Cuando se añade colchicina, que despolimeriza a los microtúbulos, ambos orgánulos colapsan y se transforman en pequeñas vesículas que se dispersan por el citoplasma. Cuando se elimina la droga y vuelven a polimerizar los microtúbulos, ambos orgánulos vuelven a sus posiciones y formas características. Ello indica que en sus membranas existen proteínas que son reconocidas por las proteínas motoras.


Los cilios y flagelos son estructuras que se proyectan desde las células, contienen microtúbulos y están rodeados de membrana plasmática. Las células utilizan estos apéndices para desplazarse, para remover el medio que les rodea o como estructuras sensoriales. Los cilios son más cortos que los flagelos, son más numerosos y se mueven de una manera en la que propelen el líquido en una dirección paralela a la superficie de la célula. Los flaglelos mueven el líquido que les rodea en una dirección perpendicular a la superficie de la célula.


Cilios y flagelos.

Los cilios y los flagelos son estructuras complejas con más de 250 proteínas diferentes. Ambos contienen una estructura central de microtúbulos llamada axonema, rodeada por membrana plasmática. Un axonema consta de 9 pares de microtúbulos exteriores que rodean a un par central. A esta disposición se la conoce como 9x2 + 2. Esta disposición se mantiene gracias a un entramado de conexiones proteicas internas. El axonema crece a partir del cuerpo basal, que tiene la misma estructura que los centriolos, es decir, está formado por 9 tripletes de microtúbulos formando un tubo hueco. Las parejas de microtúbulos externos del axonema están conectadas entre sí por una proteína denominada nexina y por radios proteicos a un anillo central que encierra al par central de microtúbulos. En los dobletes externos aparece una proteína motora asociada llamada dineína, implicada en el movimiento de los cilios y de los flagelos. La movilidad se produce por el deslizamiento de unas parejas de microtúbulos externos respecto a otras, lo que da como resultado que la estructura se curve.


Existen cilios, denominados primarios, que no funcionan como estructuras móviles. Éstos son poco numerosos, a veces aparecen solitario en las células de prácticamente todos los tejidos estudiados. Poseen en sus membranas numerosos receptores y canales iónicos, por lo que se ha propuesto un papel sensorial. Hoy en día se atribuye un papel sensorial tanto a los cilios primarios como a los móviles, donde también se han encontrado numerosos tipos de receptores.



microtubulos20.jpg
Microfotografías que muestran la disposición de los microtúbulos del huso en una célula de equinodermo durante ta embiorgénesis ( izq ); en el centro se puede apreciar un corte transversal de varios cilios y a la derecha el corte transversal de un falgelo, en ambas se muestra la disposición de los microtúbulos en la estructura 9 + 2.







Propiedades de la polimerización de la tubulina


Resumen global de dichas propiedades:

• A concentraciones de αβ-tubulina superiores a la Cc los dímeros se polimerizan para formar microtúbulos; por debajo de la Cc, los microtúbulos se despolimerizan.

• El nucleótido, GTP o GDP, unido a la β-tubulina hace que la Cc para el ensamblaje en los extremos (+) y (-) de un microtúbulo sea diferente; por analogía con el ensamblaje de actina filamentosa, se define el extremo (+) como el preferido por el ensamblaje.

• Con concentraciones superiores de αβ-tubulina a la Cc para la polimerización, los dímeros se agregan en mayor cantidad al extremo (+).

• Cuando la concentración de αβ-tubulina es más elevada que la Cc del extremo (+) pero menor que la Cc del (-), se puede dar un crecimiento en una sola dirección agregando subunidades a un extremo y disociando subunidades del extremo opuesto.

Estas características derivan en la existencia de una inestabilidad dinámica de los microtúbulos, que consiste en que, en una misma célula, algunos microtúbulos están despolimerizándose (catástrofe) y otros elongándose (rescate).

[editar] Proteínas motoras

Existen proteínas que aprovechan la hidrólisis de ATP para generar energía mecánica y desplazar sustancias sobre microtúbulos. Éstas son la dineína, transportador retrógrado, y la kinesina, transportador anterógrado.

• La dineína es una molécula de estructura similar a la kinesina: consta de dos cadenas pesadas idénticas que conforman dos cabezas globulares y de un número variable de cadenas intermedias y de cadenas ligeras. Transportan desde el extremo (+) hacia el (-) del canal intramicrotubular. Se sugiere que la actividad de hidrólisis de ATP, fuente de energía de la célula, se encuentra en las cabezas globulares. La dineína transporta vesículas y orgánulos, por lo que debe interaccionar con sus membranas, y, para interactuar con ellas, requiere de un complejo proteico, de cuyos elementos cabe destacar la dinactina.

Una kinesina unida a un microtúbulo.

• La mayoría de las kinesinas intervienen en el transporte anterógrado de vesículas, es decir, que implican un movimiento hacia la parte más distal de la célula o la neurita, desde el extremo (-) hacia el (+) de los microtúbulos, sobre los que se desplazan. Por el contrario, otra familia de proteínas motoras, las dineínas, emplean los mismos raíles pero dirigen las vesículas a la parte más proximal de la célula, por lo que su transporte es retrógrado.



Inestabilidad dinámica



Una vez se ha producido el comienzo de la formación de un microtúbulo la incorporación de nuevos dímeros de tubulina hace que el microtúbulo crezca en longitud. Este crecimiento a veces se detiene repentinamente y el microtúbulo comienza a despolimerizarse, llegando a veces incluso a desaparecer, o más frecuentemente reinicia el proceso de polimerización. A estas alternancias entre polimerización y despolimerización es a lo que se llama inestabilidad dinámica. ¿Cómo se produce este fenómeno?

En este esquema se representan los dos estados en que se encuentran los dímeros de tubulina en sus formas unidas a GTP o unidas a GDP. En el citosol se da la conversión de dímero-GDP en dímero-GTP, mientras que en el micróbulo ocurre el proceso contrario en el denominado frente de hidrólisis. Un microtúbulo despolimeriza cuando los dímeros-GDP se encuentran ocupando el extremo más, mientras que polimeriza cuando en el extremo más está formado por los dímeros-GTP, formando el denominado casquete de GTPs.


citoesq-inestabilidad.png

Los dímeros de tubulina libres en el citoplasma se encuentran unidos a una molécula de GTP. Cuando un dímero se une a un microtúbulo en crecimiento se produce una hidrólisis de GTP a GDP. Si la velocidad con la que se produce la unión de nuevos dímeros es mayor que la de hidrólisis del GTP siempre habrá un conjunto de dímeros en el extremo más que tendrán GTP unido. A este conjunto de dímeros-GTP polimerizados se le llama casquete de GTPs. Ésta es una estructura que hace más estable el extremo más. Bajo estas condiciones el microtúbulo crecerá en longitud. La velocidad de polimerización, sin embargo, depende de las condiciones del entorno citosólico en las que se encuentre el extremo más del microtúbulo en crecimiento. Si la velocidad de polimerización es ralentizada, la velocidad de hidrólisis de GTPs alcanza y supera a la de polimerización. Ello implica que llegará un momento en el que el extremo más no habrá dímeros de tubulina-GTP, sino dímeros de tubulina-GDP, los cuales tienen una adhesión inestable entre ellos cuando se encuentran formando parte del extremo del microtúbulo. Esto provoca una despolimerización masiva y la liberación de los dímeros de tubulina-GDP. Los dímeros de tubilina-GDP que quedan libres son convertidos rápidamente en dímeros de tubulina-GTP y por tanto pueden volver a unirse al extremo más de otro microtúbulo en crecimiento.


MTOCs


La concentración de dímeros de tubulina en el citosol no es suficiente para la formación espontánea de microtúbulos. Por ello existen los MTOCs (microtubule organizing centers), que son centros organizadores de microtúbulos. Estos son los lugares donde comienza la polimerización de un nuevo microtúbulo y donde suelen estar anclados sus extremos menos. El principal MTOC en las células animales es el centrosoma, el cual controla el número, localización y orientación de los microtúbulos en el citoplasma. Hay un centrosoma por célula, cuando ésta se encuentra en la fase G1 o G0 del ciclo celular, y se suele localizar cerca del núcleo. El centrosoma se compone de dos compartimentos: uno central formado por un par de centriolos dispuestos de forma ortogonal y otro periférico formado por material proteico denominado material pericentriolar. Los centriolos son estructuras cilíndricas formadas por 9 tripletes de microtúbulos que constituyen sus paredes.


citoesq-centrosoma.png

El sistema de microtúbulos de las células animales se forma principalmente a partir del centrosoma, que contiene un par de centriolos dispuestos perpendicularmente rodeados por el material pericentriolar. En ella se encuentran los anillos de γ-tubulina a partir de los cuales polimerizan los microtúbulos.

En el material pericentriolar hay numerosas moléculas entre las que se encuentra la γ- tubulina, las cuales forman unos anillos denominados anillos de γ-tubulina. Estos anillos actúan como molde y lugar de nucleación y anclaje de nuevos microtúbulos. Los centriolos, sin embargo, no desempeñan papel alguno en la polimerización y dirección de los microtúbulos, excepto en sus apéndices, que son prolongaciones proteicas ancladas a los centriolos. La misión de los centriolos es todavía un misterio puesto que las células vegetales carecen de ellos y no por eso dejan de dividirse u orientar sus microtúbulos. Los centriolos sí son similares a los corpúsculos basales, estructuras que están en la base de cilios y flagelos desde los cuales polimerizan los microtúbulos que forman su armazón. Las células vegetales, al carecer de centriolos, no forman centrosomas típicos como en las células vegetales, pero sí anillos de γ-tubulina dispersos por el citoplasma o asociados a la envuelta nuclear. En condiciones experimentales se pueden polimerizar microtúbulos de forma espontánea sin presencia de anillos γ-tubulina cuando se coloca una gran cantidad de α- y β-tubulina en solución, pero en la célula tales concentraciones son difícilmente alcanzables.

Centrosoma y ciclo celular.

El centrosoma no sólo participa en la polimerización de los microtúbulos sino que también es importante en la regulación del ciclo celular por la presencia en el material pericentriolar de numerosas proteínas que afectan al avance del ciclo celular y por la organización del huso mitótico. La duplicación de los centrosomas antes de llegar a la mitosis es fundamental para producir dos células hijas con "buena salud". Relacionado con esta actividad se ha implicado al centrosoma en el cáncer puesto que la mayoría de las células tumorales tienen centrosomas supernumerarios, lo que implica husos mitóticos multipolares que pueden llevar a aneuploidías.






Otras funciones


Además de su papel estructural como componente del citoesqueleto (junto con la actina y los filamentos intermedios), los microtúbulos están relacionados con procesos biológicos.

En el desarrollo

El citoesqueleto de microtúbulos es esencial durante los procesos morfogenéticos del desarrollo de los organismos. Por ejemplo, durante la embriogénesis en la mosca de la fruta, Drosophila melanogaster, se requiere de una red de microtúbulos intacta y polarizada dentro del oocito a fin de establecer los ejes del huevo; de este modo, las señales entre las células foliculares y las del oocito (como los factores semejantes al TGF-alfa) provocan la reorganización de los microtúbulos situando su extremo menos en la zona anterior del oocito, lo que polariza la estructura y conlleva la aparición de un eje anterior-dorsal.9 Esta implicación en la arquitectura del cuerpo también se da en mamíferos.10
Otro campo en el cual los microtúbulos son esenciales es la formación del sistema nervioso en vertebrados superiores; en ellos, la dinámica de la tubulina y de las proteínas asociadas (como las MAPs) es controlada con precisión a fin de desarrollar la base neuronal del cerebro.11

Regulación de la expresión génica

El citoesqueleto celular es un elemento dinámico que actúa a muchos niveles en la célula: además de dotarla de una forma determinada y de vertebrar el tráfico de vesículas y orgánulos, puede influir en la expresión génica. No obstante, las vías celulares (esto es, los mecanismos de transducción de señales) que intervienen en esta comunicación son muy poco conocidos. No obstante, se ha descrito la relación entre la despolimerización de microtúbulos mediada por fármacos y la expresión específica de factores de transcripción y, por ello, la expresión diferencial de los genes dependientes de la presencia de estos factores.12 Esta comunicación entre el citoesqueleto y la regulación de la respuesta celular está también relacionada con la generación de factores de crecimiento: por ejemplo, esta relación existe para el factor de crecimiento de tejido conectivo.13
En la terapia contra el cáncer este hecho tiene vital incoerente pues el paclitaxel (comercialmente conocido como taxol, un antitumoral muy empleado) posee como diana el citoesqueleto de microtúbulos, y es precisamente la interacción de este último con elementos que modulan el ciclo celular lo que provoca, en presencia del antitumoral, una serie de fallos celulares en las células cancerosas que conducen a su muerte celular programada o apoptosis.14

No hay comentarios:

Publicar un comentario