miércoles, 27 de mayo de 2015

Lógica



La lógica es una ciencia formal que estudia los principios de la demostración e inferencia válida. La palabra deriva del griego antiguoλογική logikē, que significa «dotado de razón, intelectual, dialéctico, argumentativo», que a su vez viene de λόγος (lógos), «palabra,pensamientoideaargumentorazón o principio».- .............................................................:http://es.wikipedia.org/w/index.php?title=Especial:Libro&bookcmd=download&collection_id=fa5bc9a595087757dbaad4781b05ad1b95818757&writer=rdf2latex&return_to=L%C3%B3gica


Concepto general.
 La denominación de la lógica, está directamente relacionada con la palabra griega logos, cuyo significado en griego antiguo es equivalente a“pensamiento” o “razón”, pero también “palabra” o “conocimiento”; y logiké era “lo relativo al logos” En definitiva, se trata del estudio de la forma en que funciona la facultad humana de pensar y razonar.
 Puede definirse la lógica como el conjunto de conocimientos que tienen por objeto la enunciación de las leyes que rigen los procesos del pensamiento humano; así como de los métodos que han de aplicarse al razonamiento y la reflexión para lograr un sistema de raciocinio que conduzca a resultados que puedan considerarse como certeros o verdaderos.
 Debe distinguirse entre la lógica formal y la lógica material:
  • La lógica formal también llamada lógica pura - que es la lógica propiamente dicha - es precisamente la “ciencia” (en cuanto conocimiento) que determina cuáles son las formas correctas y válidas de los raciocinios; pero lo haceconsiderándolos en sí mismos y con prescindencia de los contenidos concretos de los razonamientos, es decir, considerando esos contenidos como entes lógicos abstractos, de tal manera que las leyes a aplicar tengan validez para cualquier contenido concreto.
     El raciocinio puede definirse como un proceso del pensamiento (por tanto, exclusivamente humano) que a partir de ciertos conocimientos establecidos (llamados premisas), conduce a adquirir un conocimiento nuevo (contenido en la conclusión) sin que para ello haya que recurrir a nuevas constataciones u observaciones sensibles distintas o adicionales a las ya contenidas en las premisas.
    Por lo tanto, la verdad a que conduce la lógica formal, es una verdad formal; que será verdad en tanto sea verdad el contenido de las premisas, e indicará solamente que existe una congruencia de ese raciocinio, consigo mismo. Si en un razonamiento existe falsedad en las premisas y la conclusión asimismo es falsa; de todos modos el razonamiento será correcto o válido como razonamiento.
  • La lógica material también llamada lógica aplicada, es aquella en que un proceso de raciocinio o de pensamiento se analiza en consideración al contenido real de sus premisas, y por lo tanto debe conducir a una verdad materialuna conclusión que sea concordante con la realidad.
    Mientras que las premisas (o predicados) que toma en consideración la lógica pura constituyen entidades abstractas y absolutamente precisas, respecto de las cuales no es requerido que exista ningún objeto de la realidad que los verifique; es difícil encontrar en la realidad conceptos de origen empírico-sensible que presenten exactamente las características de los objetos lógicos.
    Aparte de ello, respecto de todo concepto de origen empírico, no solamente es posible concebir sino que también se encuentran en la realidad experimental, objetos respecto de los cuales no es posible afirmar de manera absolutamente cierta que coinciden o que no coinciden con esos conceptos.
    Por lo tanto, respecto de proposiciones lógicas que utilicen esos conceptos, las leyes de la lógica formal solamente serán aplicables con especial precaución. De tal manera, las leyes de la lógica formal solamente resultarán aplicables con alcance estricto en el campo de las ciencias puramente exactas y abstractas, tales como las matemáticas, la propia lógica, la mecánica, y aquellas disciplinas exclusivamente normativas y abstractas tales como la interpretación jurídica.

Breve historia de la lógica.
 Entre los muchos aportes que hizo Aristóteles al conocimiento abstracto, sin duda la lógica formal - de la que fue indiscutiblemente creador - no solamente puede considerarse el más trascendental, sino aquel en que logró mejores y mayores aciertos.
La principal aportación de Aristóteles fue la silogística, el estudio del procedimiento de raciocinio por medio del silogismo, en que de dos premisas se deduce una conclusión; también llamada lógica de las proposiciones o lógica “clásica”. Los filósofos ulteriores, sobre todo los pertenecientes a la escuela estoica pre-cristiana y a la escolástica medieval desarrollaron a fondo la lógica de las proposiciones; sistematizando y completando la silogística aristotélica así como llegaron a desarrollar las llamadas “lógicas modales”.
 Recién en el siglo XIX puede decirse que se desarrollaron nuevas aportaciones de importancia en el campo de la lógica, con el desenvolvimiento de la “lógica matemática” que, a partir del antecedente del pensamiento de Leibnitz, realizaron Boole y Frege.
El filósofo y matemático alemán Gottfried Wilhelm Leibnitz (Leipzig, 1646 - Hannover, 1716) - a quien cabe considerar el creador de la lógica matemática - desarrolló la idea de un calculus ratiocinator, mediante el cual se aplicaría un sistema de reglas a algunos conceptos generales precisamente definidos, lo que habilitaría a operar en el campo de las cuestiones filosóficas con los mismos procedimientos del razonamiento matemático. Esta idea tenía implícito el concepto de crear un método equivalente al de las ciencias exactas para alcanzar la certeza en cuanto a las cuestiones filosóficas; pero precisamente por su estrecha vinculación con especulaciones filosóficas sobre numerosos temas como la metafísica y la teodicea, el concepto quedó largo tiempo olvidado.
Fue así que la lógica matemática - también llamada lógica simbólica - se desarrolló efectivamente en el siglo XIX, especialmente a partir de George Boole (Inglaterra, 1815 - 1864), autor de la obra “Investigación de las leyes del pensamiento en que se fundan la teorías matemáticas de la lógica y la probabilidad”, en que se originara la conocida como “álgebra booleana”; que conjuntamente con Frege consiguió construir cálculos lógicos rigurosamente formalizados, que permitieron aplicar a los problemas lógicos los procedimientos matemáticos. Con ello sentaron los fundamentos operativos de la tecnología de la moderna computación, que fueran ulteriormente desarrollados por las teorías de Emil Post y el célebre matemático inglés Allan Mathison Turing (Inglaterra, 1912-1954), creador de la Automatic Digital Machine que por primera vez permitió realizar cálculos mecanizados mediante el empleo de algoritmos.
La obra culminante de la lógica simbólica, la constituye Principia mathematica deSir Bertand Russell (Inglaterra, 1872-1970) y Alfred North Whitehead (Inglaterra, 1861 - U.S.A., 1947), realizada en tres tomos, entre los años 1910 y 1913. En esta obra, se sustenta el concepto de que las matemáticas puras se obtienen de premisas lógicas puras, de modo que los conceptos que las definen también son conceptos lógicos puros.
 Cabe señalar, ante lo precedente, la evidencia que emerge en cuanto a la trascendental importancia que la lógica reviste en todos los órdenes de las actividades y del conocimiento humano; siendo demostrativa del estrecho vínculo que existe entre sus remotos orígenes filosóficos, su absoluta conexión con los fundamentos del conocimiento de las matemáticas y, por esa vía, su clara incidencia en los fundamentos teóricos y conceptuales de la computación. Ésta, a su vez, alcanza una repercusión trascendental no solamente en la informática en sí misma, sino en todas sus aplicaciones en la vida cotidiana; ya sea a nivel de la industria, las comunicaciones, y aún en una enorme variedad de elementos de uso y consumo cotidiano.
Teniendo clara conciencia de la forma en que, desde el fondo de los siglos, se proyecta hacia nosotros el esfuerzo intelectual de Aristóteles para habilitarnos apensar correctamente; el empleo de las reglas de la lógica en otros campos, tales como las decisiones en el orden de la vida personal, política, económica y jurídica - en muchos de cuyos aspectos no suele ser frecuente aplicarla - debiera ser una importante preocupación para todos.

Los principios lógicos.
 Como punto de partida del estudio de las leyes que rigen el proceso del razonamiento, se han establecido ciertas leyes fundamentales, que se considerangenerales y anteriores a todos los que de ellos se deducen, que son producto de la intuición (resultado de un conocimiento directo e inmediato), y sobre los cuales se fundamentan todas las restantes normativas lógicas.
Estos principios se consideran verdades axiomáticas, evidentes por sí mismas, que no tienen que, ni necesitan, demostrarse.
Son cuatro principios, los tres primeros enunciados por Aristóteles y el cuarto agregado por Leibnitz:
  •  El principio de identidad — Desde el punto de vista del ser, (ontológico) se enuncia expresando que todo objeto (de conocimiento) es igual a sí mismo. Sin embargo, desde el punto de vista lógico, su enunciado se relaciona con la estructura de las proposiciones, expresando que el principio de identidad se verifica cuando en una proposición verdadera el concepto contenido en el predicado es total o parcialmente idéntico al concepto contenido en el sujeto: “el triángulo tiene tres lados”.
  •  El principio de (no) contradicción — También tiene una formulación ontológica conforme a la cual un objeto (de conocimiento) no puede ser y al mismo tiempo no-ser. Desde el punto de vista lógico, este principio se enuncia expresando que dos proposiciones contradictorias no pueden ser ambas verdaderas; o que toda contradicción encierra una falsedad: Si es verdad que “el triángulo tiene tres lados”, no puede ser verdad que “el triángulo no tiene tres lados”.
    En relación a la lógica aristotélica, o clásica, puede decirse que el principio de no contradicción es el fundamental de todos; al punto de que existen quienes lo consideran el único principio, del cual se extraen los otros.
  •  El principio de tercero excluído — Este principio está estrechamente vinculado con el de no contradicción, al punto que a veces se lo distingue de éste expresando que mientras el de no contradicción expresa que dos proposiciones contradictorias no pueden ser ambas verdaderas, el de tercero excluído expresa que dos proposiciones contradictorias no pueden ambas ser falsas. Sin embargo, es más apropiado referir este principio al concepto de valor de verdad de la lógica clásica, conforme al cual una proposición solamente puede tener valor de verdadera o de falsa; y por lo tanto, entre la verdad o la falsedad, no existe una tercera posibilidad. En consecuencia, la relación con el principio de no contradicción queda mejor expresada en cuanto al principio de tercero excluído, si se enuncia en el sentido de que de dos proposiciones contradictorias, necesariamente una ha ser verdadera y la otra ha de ser falsa.
  •  El principio de razón suficiente — Este principio fue enunciado por Leibnitz en un sentido ontológico expresando que todo lo que existe tiene su razón de ser. Algunos filósofos le han dado una enunciación en sentido lógico, expresando que todo juicio es falso o verdadero, por alguna razón; y por lo tanto ha de ser posible justificar su veracidad o su falsedad por medio de la razón. De este principio, se considera derivado el:
    • El principio de causalidad — Este principio, más propiamente ontológico, implica que todo lo que existe tiene una causa; por lo cual todo lo que es efecto de una causa puede convertirse a su vez en causa de otro efecto.

Lógica y verdad.
 Como se ha expresado antes, la lógica formal o lógica pura, estudia las formas en que procede el raciocinio, en forma abstracta; es decir, prescindiendo de sus contenidos concretos. Por ese camino, procura encontrar las leyes formales universales del pensamiento correcto; de tal manera que produzcan ese resultado cualquiera sean los contenidos a que se apliquen.
De tal manera, la lógica formal se atiene no al contenido sino a la validez de los razonamientos, no a su materia sino a su forma; por lo cual la forma de un razonamiento correcto debe ser independiente:
  • tanto de los objetos de que trate,
  • como de las propiedades de esos objetos que puedan tomarse en consideración.
 Como también se ha señalado antes, en el estudio del proceso de un razonamiento determinado, hecho a partir de ciertas premisas, no es permitido acudir a elementos que no estén ya contenidos en esas premisas; de modo tal que para la validez de la conclusión a que conduzca el razonamiento:
  • si los datos del objeto de que tratan las premisas han sido previamente constatados para él, deben darse por verificables en cualquier otro objeto de la misma categoría.
  • si en las premisas se considera determinadas propiedades, el razonamiento válido para ella debe continuar siéndolo tanto en las premisas como en la conclusión, si alguna de esas propiedades es sustituída por otra.
  • si el razonamiento correcto tiene una determinada validez en un determinadomomento de cualquiera de ellos, debe mantener la misma validez en cualquier otro momento; tanto respecto del objeto de la premisa como de sus propiedades.
 La lógica clásica de las proposiciones, no admite más que dos posibilidades de validez del razonamiento, o valores de verdadverdaderofalso; por ello, se trata de una lógica binaria.
No resulta admisible la existencia de un valor de verdad intermedio entre lo falso y lo verdadero, como podría ser lo “dudoso”; ni más débil que lo falso, como podría ser lo “imposible”.
Por lo tanto:
    • estos valores de verdad se excluyen recíprocamente en forma absoluta,
    • toda proposición encierra necesariamente uno de ellos.
En tales condiciones, la validez de un razonamiento no depende ni es consecuencia del valor de su conclusión; un razonamiento puede ser no válido, aunque su conclusión sea verdadera. Para que un razonamiento sea correcto, es necesario que en todos los raciocinios de la misma forma, partiendo de premisas verdaderas, la conclusión sea igualmente verdadera.
 Un razonamiento puede ser válido si su conclusión es falsa, con tal que por lo menos una de sus premisas sea también falsa.
En este caso, se estará frente a lo que se denomina refutación por el absurdo. Cuando se razona en base a dos premisas, una de las cuales es dudosa, al efectuar un razonamiento correcto que conduce a una conclusión que es conocida como falsa, permitiría evidenciar la falsedad de la premisa de que se ha partido.

Lógica y filosofía - Sistemas lógicos.
 La lógica formal, por lo antes visto, acude a una noción de verdad, pero no se ocupa ella misma de establecer la verdad material.
Para sus propios fines, la lógica utiliza una noción de verdad que aplica solamente para establecer la idea de una proposición verdadera, para legitimar la validez de un razonamiento como proceso lógico; pero esa noción de verdad no pertenece a la lógica misma, sino que la toma de alguna concepción filosófica previa, o de alguna estructura de pensamiento con que ya se está familiarizado.
Cuando la noción de verdad empleada en un razonamiento lógico proviene de una posición filosófica previamente elaborada, es evidente que la validez del razonamiento formal, a los fines de la verdad material, es solidaria aquella de la filosofía en que se fundamenta.
En los casos en que la noción de verdad se fundamenta en axiomas: proposiciones que en una determinada disciplina se dan por evidentes en sí mismas o por irrefutablemente demostradas - la lógica deja a cargo de esas disciplinas la decisión sobre el valor definitivo del razonamiento, en cuanto por más que en sí mismo sea correcto, su validez como verdad material dependerá necesariamente del valor propio de esos principios.
Esto es lo que determina que sea posible hablar de “sistemas lógicos”, sin que, en cuanto a ellos, se vea afectada la validez del proceso del razonamiento a consecuencia de la invalidez del valor de verdad inherente a cada sistema sustancial o material de razonamiento al que las leyes de la lógica sean aplicadas. En tales casos, la ausencia de verdad de las conclusiones no será imputable a la invalidez del razonamiento, sino a la invalidez de la función de verdad previamente aplicada a las premisas.
En este sentido, es posible considerar la lógica, en cuanto “ciencia” de los razonamientos, tanto como un conocimiento filosófico cuanto como un conocimiento no filosófico (o, más propiamente, a-filosófico).
La lógica filosófica - que era el punto de vista de los pensadores antiguos a partir de Aristóteles y de hecho hasta el siglo XIX - pretende fundamentarse sobre certezas de índole filosófica; particularmente respecto de cuestiones concernientes a la naturaleza de los actos del intelecto humano respecto del conocimiento contenido en las premisas y consiguientemente en las conclusiones.
En cambio, la lógica simbólica o matemática - o formalizada - de la época contemporánea, pretende liberarse de toda concepción filosófica, y elaborar sus teorías a partir de una noción propia de verdad postulada en algunas pocas propiedades simples; a partir de las cuales trata de elaborar el concepto de“raciocinio válido”.

De cualquier manera, lo que no puede perderse de vista es que, a la larga, esa lógica aséptica de toda filosofía, con toda su indiscutible validez desde el punto de vista de las ciencias abstractas como las matemáticas o la mecánica y sus útiles aplicaciones;no resulta aplicable a numerosos campos de la actividad humana, en los cuales es ineludible partir de premisas cuyo valor de verdad podrá parecer no objetivamente demostrable, pero que necesariamente implican presupuestos dotados de esa función de verdad en otros planos, particularmente aquellos éticos.
Tampoco puede perderse de vista que, en último análisis la lógica misma es un fenómeno de la realidad en la medida en que lo es el pensamiento humano; y que por lo tanto los principios lógicos aparecen como generalizaciones de observaciones realizadas sobre lo real. Las operaciones lógicas son, en definitiva, modos de ordenar las realidades efectivas o posibles, a los fines de alcanzar su adecuado conocimiento. La realidad misma, en este enfoque, son modos de comportamiento de lo que percibimos, respecto de lo que es nuestro conocimiento; y que exhiben si él es falso o verdadero.
De tal manera, si bien el buen funcionamiento de los procesos lógicos depende de su validez resultante de la verdad formal a que conduzcan, el objetivo instrumental final de la lógica es habilitar el verdadero conocimiento de la realidad; y para ello tanto es indispensable recoger esa realidad en las premisas como aplicar las leyes lógicas correctamente al extraer las conclusiones. De tal manera, en lo que se refiere a las actividades y conocimientos no abstractos (abstractos pueden serlo los matemáticos o los sistemas normativos de creación humana, como la legislación), el único sistema lógico admisible es el que parte del reconocimiento y la aceptación de la realidad en sus premisas.
Especialmente en las cuestiones políticas, jurídicas y económicas , los razonamientos lógicos siempre estarán doblemente condicionados, a los efectos de su factor material de verdad:
    • por una parte en cuanto a la validez resultante de la propia corrección de la forma aplicada para el razonamiento;
    • pero asimismo - y será seguramente lo más importante - al factor de verdad que afecte su sistema lógico en función de los valores de verdad que se asigne a sus premisas de partida, desde el punto de vista tanto filosófico, como de su correcto ajustamiento a su propia estructura normativa o, en su caso, a la realidad material.


Lógica, lenguaje y símbolos.
 En la práctica, no es posible razonar directamente mediante conocimientos en un estado mental, sino por medio de representaciones simbólicas, que se expresan en objetos materiales perceptibles por medio de los sentidos, tales como palabras, signos, gráficos, fórmulas, etc.
El uso del lenguaje corriente lleva implícito un enfoque de sintaxis, que consiste en las relaciones formales entre los términos empleados; y un enfoque semántico, que consiste en el sentido de referencia que se atribuye a las palabras empleadas, su relación con los objetos y los conceptos de la realidad a que con su empleo se trata de aludir, y que es cierto modo es socialmente cambiante dentro de un mismo idioma, considerando distintos tiempos y lugares.
El lenguaje de uso corriente - tanto el coloquial como el culto, literario o el de ciertas disciplinas especializadas - resulta totalmente imperfecto en cuanto al rigor, claridad, abstracción y precisión requerido para la expresión de los conceptos y objetos en los estudios lógicos; especialmente considerando lo expuesto en cuanto a la prescindencia de los componentes de contenidos materiales de los procesos del razonamiento.
 En función de ello, la lógica formal procura liberarse de la incidencia que, en cuanto al examen de las cuestiones formales del razonamiento, pueda tener el uso de términos de los lenguajes idiomáticos, creando para ser aplicado en el estudio y exposición de las leyes lógicas, un lenguaje simbólico propio, un lenguaje formal.
Este lenguaje simbólico propio de la lógica, tiene por otra parte la ventaja de suuniversalidad; en cuanto al prescindir del empleo de expresiones de un idioma real, permite su comprensión directa independientemente del idioma concreto de la persona que se aplique a su estudio.
Ese lenguaje simbólico es además lo que se denomina un metalenguaje, en el sentido de que se lo concibe como una forma de expresión que está “más allá” del uso mismo del lenguaje. En este sentido, se dice que el lenguaje-objeto es el que se utiliza, en tanto que el metalenguaje es aquel con el que se habla del otro; como cuando se aprende un idioma extranjero utilizando para ello el idioma propio.
Una expresión sencilla del lenguaje simbólico aplicable al análisis lógico puede ser similar al aplicado en matemáticas para representar una variable. De esta forma,
un silogismo simple como:
Todos los hombres son mortales
Sócrates es hombre,
entonces Sócrates es mortal
puede expresarse bajo la forma:
Si A es B
C es A
entonces C es B
De esta manera, la sustitución de una proposición por un síimbolo permite construir una teoría de las formas del razonamiento en las cuales intervengan componentes similares; de modo que sea posible reconocer facilmente en un proceso de razonamiento la presencia de una misma proposición, de un mismo concepto, o de una misma propiedad o atributo.
El símbolo que se emplea para representar una proposición se designa comovariable proposicional; pero debe distinguirse muy cuidadosamente de lo que constituye un símbolo de variables en otras disciplinas, como el álgebra o los lenguajes informáticos de programación:
    • Una variable algebraica de las que se emplean en las fórmulas matemáticas, físicas o de otras ciencias, es un símbolo de valor cuantitativo implícito; ya sea que se trate de despejarlo cuando constituye una incógnita o que se trate de examinar diversas situaciones en función de los distintos valores que puede asumir. De la misma forma, en programación informática, es un símbolo susceptible de tomar diversos valores (no necesariamente aritméticos o cuantitativos) con lo cuales el programa opera; y que pueden modificarse en el transcurso de su ejecución.
    • Una variable proposicional, en cambio, representa una entidad lógicaque se puede elegir o asignar con cierta libertad, dentro de un cierto ámbito conceptual - llamado “dominio de variación” de la variable - que se caracteriza por poseer ciertas propiedades comunes a todos sus miembros, pero sin que eso permita establecer qué otras propiedades podrán distinguir esa entidad, de otras pertenecientes al mismo dominio.

No hay comentarios:

Publicar un comentario