Características
Para mayor claridad, sea:
en donde:
. Para reducir la expresión a fracciones parciales se debe expresar la función de la forma:- o
es decir, como el producto de factores lineales o cuadráticos.
Casos
Se distinguen 4 casos:
Factores lineales distintos
Donde ningún par de factores es idéntico.
Donde
son constantes a determinar, y ningún denominador se anula.Factores lineales repetidos
Donde los pares de factores son idénticos.
Donde
son constantes a determinar, y ningún denominador se anula.Factores cuadráticos distintos
Donde ningún par de factores es igual.
Donde
son constantes a determinar, y ningún denominador se anula.Factores cuadráticos repetidos
Donde
son constantes a determinar, y ningún denominador se anula..Cómputo de las constantes
Para hallar las constantes, en el caso de factores lineales distintos se puede utilizar la siguiente fórmula:
en donde
Para los otros casos no existe una formulación específica. Sin embargo, estos se pueden resolver simplificando y formando un sistema de ecuaciones con cada una de las , la resolución del sistema proporciona los valores de los .
Ejemplo 1
Sea
Se puede descomponer en
Necesitamos encontrar los valores a y b
El primer paso es deshacernos del denominador, lo que nos lleva a:
Simplificando
El siguiente paso es asignar valores a x, para obtener un sistema de ecuaciones, y de este modo calcular los valores a y b.
Sin embargo, podemos hacer algunas simplificaciones asignado
Para el caso de a observamos que
nos facilita el proceso
Siendo el resultado, el siguiente
Ejemplo 2
Sea
Se puede descomponer de esta manera
multiplicando por
, tenemos
Simplificando
Procedemos a asignar valores a x, para formar un sistema de ecuaciones
Resolviendo el sistema de ecuaciones, tenemos finalmente
Ejemplo 3
Tenemos
que se puede convertir en
Multiplicamos por
Tenemos
Simplificando
Ahora podemos asignar valores a x
Resolviendo el sistema, resulta
Y el problema se resuelve de esta manera
Consideremos integrales de la forma
Efectuamos la descomposición de Q(x) en la forma:
Q(x) = (x - a1).(x - a2)...(x - an)
Caso 1.- Si las raíces del polinomio, ai, son reales y distintas, identificamos el integrando con la siguiente suma de fracciones simples:
Determinamos el valor de los Ai efectuando la suma de fracciones:
e identificando los coeficientes de los polinomios de los dos numeradores. La integral quedará:
Ejemplo: 
dx. Como el grado del numerador es mayor que el del denominador, efectuamos la división, obteniendo:
Es decir:
= x - 1 +
. Por tanto:
y en la segunda integral, el numerador es de grado menor que el denominador.
Descomponiendo: x3 + x2 - 4x - 4 =
x - 2
x + 2
x + 1
, y,
Identificando los numeradores será:
x2 + x - 3 = A1
x + 2
x + 1
+ A2
x - 2
x + 1
+ A3
x - 2
x + 2
Para x = 2, será: 3 = 12A1, para x = - 2, -1 = 4A2, y para x = - 1, -3 = - 3A3.
Del sistema ![$ \left.\vphantom{
\begin{array}[c]{r}%%
3=12A_{1}\\
-1=4A_{2}\\
-3=-3A_{3}%%
\end{array}}\right.$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s4rV7VE9WIWGJKxAR6Jancj6YzxdUE-rq9p5XpwI9yDe00pSpXmeC_wDAbuuRom3iI2Y2LCe9cHrAYjeTwrA8aYQsi9uhjZJS6Qv8OC28H6Ut-dYvYeIdki0fJclRw-PIgAiV63t_leMKjb8R8=s0-d)
![$ \begin{array}[c]{r}%%
3=12A_{1}\\
-1=4A_{2}\\
-3=-3A_{3}%%
\end{array}$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tpa8TNWmtVbcJ7Q5Jf-4r7AQFHDgSvrFduKzwU59xdOIXGpz4OGLSvbTfHCNUorWKw7Zw8Fb1BjN5KeBZLTdn3OOiN0zbn1XAa69zOBVanGOVSJ1PotXx9wyEezWgGhkaa7u-4eVLYjKAlLtE=s0-d)
,
A1 =
, A2 = -
, A3 = 1.
=
ln(x - 2) -
ln(x + 2) + ln(x + 1) + C = ln
(x + 1)![$ \sqrt[4]{\frac{x-2}{x+2}}$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_thx_xfluSoh0B1LRZh_SFbtoPqjSFjTq-g_CygMK57E2X9ZuLIzFXmCkt1IOZ-IKGcwnc38e-nBCjomPwfIhrDaJsYpFnr8YoxLZ8hu4pCMBpxULw7rcGeSqAAU59JooUYsvdwXlyiCtlWR2_n=s0-d)
+ C.
La integral pedida es:
Ejemplo: 
dx.
Descomponemos el denominador, y: x3 + 3x2 - 4 = (x - 1)(x + 2)2.
Las fracciones simples serán:
Identificando los numeradores:
x2 + x + 3 = A(x + 2)2 + B1(x - 1)(x + 2) + B2(x - 1).
Para x = 1, 5 = 9A, para x = - 2, 5 = - 3B2, y por ejemplo para x = 0,
3 = 4A - 2B1 - B2. El sistema será: ![$ \left.\vphantom{
\begin{array}[c]{l}%%
5=9A\\
5=-3B_{2}\\
3=4A-2B_{1}-B_{2}%%
\end{array}}\right.$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vamt_WMKwqcfJtGTM185QWJkBG1YBGVVLjSpW0mEIeCt71wPT2K5IgUPaLc1wOzeO14vr61HPZBHG-o3-0p2wVN57sqH0Yynk8xZ09hlVWkzJvGiNnBHlSGOGDgkl_PIEJhkLwoyI-uF81F04=s0-d)
![$ \begin{array}[c]{l}%%
5=9A\\
5=-3B_{2}\\
3=4A-2B_{1}-B_{2}%%
\end{array}$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_u4I88Zxw_kCa59icHvo2jFh-sKgceY4iLfEXudlDHjHg_18YCAPu_RKqwaDPp7eJTtnr9CviVUu-hfXjMjGvrUsIHOetsPl3CkT-jlTXYHxf_JtcLPNF3rmkQ_ZRIsAyT4cUENfLo8Ed-XqEk=s0-d)
, de donde : A =
, B1 =
, y B2 = -
.
= ln![$ \left[\vphantom{ \sqrt[9]{(x-1)^{5}(x+2)^{4}}}\right.$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vSUNilfqDlj19lgePEJeHsGga0DSJ2KgHVIeNqhFH8AaRHn9U9iEMaC5--p_WKChW5Efk4ydrvXN_DW--JaYo8nvMpuNyVqIki5EhxNYK74oopYuM1_6VGS5wpuyYxL5HgHpSd-ag1bZ3OvQwV=s0-d)
![$ \sqrt[9]{(x-1)^{5}(x+2)^{4}}$](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_upo8PP1v8XsDR9o3FdsvJ9bDyb2uoFA7gNKl5GflZx9dkVw8SzO2Qj6o1qEQuDLcqQ22EiliOnhb60XD3zAPt70uWas6qtGAGoaXSS3JhWz3QL_nfP7g_WfNlaFBg077vxdgqJedrqmh8LTDIA=s0-d)
+
+ C.
Caso 3.- Si en el denominador aparece un factor cuadrático irreducible (ax2 + bx + c) añadimos a la suma de fracciones de los casos anterior una fracción del tipo
Ejemplo: 
dx.
La descomposición del denominador es: x3 + 2x2 + 2x + 1 =
x2 + x + 1
x + 1
(Al factor cuadrático x2 + x + 1 le corresponden las raíces complejas : -
+
i y -
-
i)
Identificamos
=
+
, obteniendo A = 6, M = - 5, y N = - 2.
No hay comentarios:
Publicar un comentario