viernes, 30 de diciembre de 2016

Matemáticas - Fracciones

División polinomial


división de polinomios (también división polinomial o división polinómica) es un algoritmo que permite dividir un polinomio por otro polinomio que no sea nulo.
El algoritmo es una versión generalizada de la técnica aritmética de división larga. Es fácilmente realizable a mano, porque separa un problema de división complejo, en otros más pequeños.
Sean los polinomios  y , donde  no es el polinomio nulo, entonces existe un único par de polinomios  y  tal que:
con el grado de  menor que el grado de  y el grado de  es la diferencia entre el grado de de f y de g (para  en el caso general  ). La división sintética permite obtener el cociente  y el resto  dado un dividendo  y un divisor El problema se expresa como un problema de división no algebraico:[cita requerida]
Todos los términos con exponentes menores que el mayor deben escribirse explícitamente, incluso si sus coeficientes son cero.

Condiciones de divisibilidad

Si A es un anillo, la división polinomial en A[X] no es siempre posible. Por ejemplo, en Z[X], los polinomios con coeficientes enteros, no es posible dividir X² por 2X + 3, porque el cociente (trabajando en R[X]) es: X/2, y no pertenece a Z[X].
La única condición para que sea posible es que coeficiente dominante (el del monomio de mayor grado) sea inversible. En el ejemplo de abajo, la división por X - 1 (1X - 1) no causa problemas porque el coeficiente dominante es 1, que inversible en Z.

División por un binomio

El cociente y el resto de una división de un polinomio con coeficiones enteros en x entre x+a se pueden hallar usando la división larga, o utilizando la regla de Ruffini. Tiene la propiedad de que el cociente de esta división será un polinomio en x cuyo grado es una unidad menor que el grado del dividendo y cuyo coeficiente del término general del cociente es igual al coeficiente del término general del dividendo.

Ejemplo

Encontrar:
Se escribe el problema de la siguiente forma (notar que tal como se explicó previamente, se incluye explícitamente el término x, aunque su coeficiente sea cero):
1. Dividir el primer término del dividendo por el término de mayor grado del divisor. Poner el resultado arriba de la línea horizontal (x3 ÷ x = x2).
2. Multiplicar el divisor por el resultado obtenido en el paso previo (el primer término del eventual cociente). Escribir el resultado debajo de los primeros dos términos del dividendo (x2 * (x-3) = x3 - 3x2).
3. Restar el producto obtenido en el paso previo de los términos correspondientes del dividendo original, y escribir el resultado debajo. Tener cuidado al realizar esta operación de colocar el signo que corresponda. ((x3-12x2) - (x3-3x2) = -12x2 + 3x2 = -9x2) Luego, "desplazar hacia abajo" el próximo término del dividendo.
4. Repetir los tres pasos previos, excepto que esta vez utilizar los dos términos que se acaban de escribir en el dividendo.
5. Repetir el paso 4. Esta vez, no hay nada para "desplazar hacia abajo".
El polinomio arriba de la línea horizontal es el cociente, y el número que queda (-123) es el resto.
Este método es una reminiscencia de los métodos de división utilizados en clases elementales de aritmética.

División según las potencias crecientes

En algunos casos es interesante considerar que X es pequeño frente a 1 y hacer las divisiones al revés, empezando por las constantes (que son los términos mayores) y terminando por los Xn, con n grande. Formalmente, se modifica la definición del grado: d o (Xn) = - n. La diferencia es que ya no hay unicidad, y es necesario fijarse por antelación una precisión, es decir un grado máximo al resto.
División euclidiana creciente polinomio.png
Por ejemplo, dividamos  por  al orden 3: el resto deber haber como término más fuerte (aquí el monomio de menor exponente) a lo mejor X4. La igualdad obtenida (en azul) equivale a:


la que, además de ser cierta, es un caso especial de la suma de términos de una sucesión geométrica:

y cada valor de n corresponde a una división euclidiana con una precisión distinta.
Otro punto de vista es considerar a  como el inicio del desarrollo de  en serie de Taylor.
División euclidiana serie.png
Más generalmente, la serie de Taylor de una función racional se obtiene mediante la división euclidiana de la serie de Taylor del numerador por la del denominador.
Por ejemplo, considérese la función trigonométrica tangente: , y busquemos su desarrollo alrededor de 0 al orden 5. Hay que conocer las series al orden 5 (por lo menos) del seno y del coseno, y dividirlas descartando sistemáticamente los términos de orden mayor que aparecen en el cálculo. Como la función tangente es par, sólo hay tres monomios (en X, X³ y X5) que buscar.
El resultado es 
La división euclidiana también existe en los anillos de polinomios de múltiples variable K[X,Y,Z...], donde hay varias maneras de definir el grado (parcial, total...) y otras tantas de proceder a la división.

DIVISIÓN DE POLINOMIOS
La división algebraica es la operación que consiste en hallar uno de los factores de un producto, que recibe el nombre de cociente dado el otro factor, llamado divisor, y el producto de ambos factores llamado dividendo.

De la definición anterior se deduce que el dividendo coincide con el producto del divisor por el cociente. Así por ejemplo, si dividimos , se cumplirá que 
     

Si el residuo no fuera igual a cero, entonces:

Para efectuar una división algebraica hay que tener en cuenta los signos, los exponentes y los coeficientes de las cantidades que se dividen.
(+)÷(+)=+
(–)÷(–)=+
(+)÷(–)=–
(–)÷(+)=–


DIVISIÓN DE UN MONOMIO POR OTRO
Para dividir dos monomios se divide el coeficiente del dividiendo entre el coeficiente del divisor y a continuación se escriben las letras ordenadas alfabéticamente, elevando cada letra a un exponente igual a la diferencia entre el exponente que tiene en el dividendo  y el exponente que tiene en el divisor. El signo del cociente será el que corresponda al aplicar la regla de los signos.

EJEMPLO:
Dividir  
SOLUCIÓN: 

EJEMPLO:
Dividir 
SOLUCIÓN: 

EJEMPLO:
Dividir 
SOLUCIÓN: 

En ocasiones el cociente de dos monomios es fraccionario y, por consiguiente, la división propiamente dicha no puede efectuarse en los siguientes casos:
a)      Cuando una letra está elevada a un exponente menor al que se halla elevada dicha letra en el divisor.
b)      Cuando el divisor contiene alguna letra que no se halla en el dividendo.

EJEMPLO:
Dividir 


DIVISIÓN DE UN POLINOMIO POR UN MONOMIO
Para dividir un polinomio por un monomio se divide cada uno de los términos del polinomio por el monomio teniendo en cuenta la regla de los signos, y se suman los cocientes parciales así obtenidos.

EJEMPLO:
Dividir 
SOLUCIÓN: 

EJEMPLO:
Dividir
SOLUCIÓN: 

EJEMPLO:
Dividir
SOLUCIÓN: 


DIVISIÓN DE UN POLINOMIO POR UN POLINOMIO.
Para dividir dos polinomios se procede de la manera siguiente:
1)      Se ordena el dividendo y el divisor  con respecto a una misma letra.
2)      Se divide el primer término del dividendo entre el primer término del divisor, obteniéndose así el primer término del cociente
3)      Se multiplica el primer término del cociente por todo el divisor y el producto así obtenido se resta del dividendo, para lo cual se le cambia de signo y se escribe cada término de su semejante. En el caso de que algún término de este producto no tenga ningún término semejante en el dividendo, es escribe dicho término en el lugar que le corresponda de acuerdo con la ordenación del dividendo y del divisor.
4)      Se divide el primer término del resto entre el primer término del divisor, obteniéndose de este modo el segundo término del cociente.
5)      El segundo término del cociente  se multiplica por todo el divisor y el producto así obtenido se resta del dividendo, cambiándole todos los signos.
6)      Se divide el primer término del segundo resto entre el primer término del divisor y se repiten las operaciones anteriores hasta obtener cero como resto.

EJEMPLO:
Dividir: 

Para resolver la operación anterior se procedió del modo siguiente:
En primer lugar se han ordenado dividendo y divisor en orden ascendente con respecto a la letra y y en orden descendente con respecto a la letra x.
A continuación se ha dividido el primer término del dividendo, , entre el primer término del divisor, , obteniéndose , por cada uno de los términos del divisor, obteniéndose como resultado , que se escribe debajo de los términos semejantes del dividendo cambiando los signos de todos los términos semejantes, obteniéndose como primer resto .
Después se ha dividido  entre  obteniéndose como cociente , que es el segundo término del cociente. Multiplicando  por todos los términos del divisor que se obtiene como resultado , que se escribe debajo de los  términos semejantes del primer resto cambiando los signos de todos sus términos para efectuar la resta.
A continuación se ha procedido a efectuar la reducción de términos semejantes, obteniéndose como segundo resto 
Finalmente se ha dividido  entre , obteniéndose como cociente . Multiplicando  por todos los términos del divisor se obtiene como producto , que se escribe debajo de los términos semejantes del segundo resto cambiando los signos de todos lo términos para efectuar la resta. A continuación se ha procedido a efectuar la reducción de términos semejantes, obteniéndose como tercer resto 0, con lo cual queda acabada la división.

EJEMPLO:
Dividir: 

SOLUCIÓN:

EJEMPLO:
Dividir: 
SOLUCIÓN:

EJEMPLO:
Dividir: 
SOLUCIÓN: 

Se dice que una división de un polinomio por otro es inexacta cuando:
a)      Si después de ordenar los dos polinomios, el primer término del dividendo no es divisible entre el primer término del  divisor.
b)      Si el último término del dividendo no es divisible entre el último término del divisor.
c)      Si en el primer término de algún dividendo parcial la letra ordenatriz tiene menor exponente que en el primer término del divisor.

No hay comentarios:

Publicar un comentario