En topología, una función abierta es una función entre dos espacios topo-lógicos cuando la imagen de un conjunto abierto es un conjunto abierto. Es decir, una función f: X →Y es abierta si para cualquier conjunto abierto U en X, la imagen f(U) es abierta en Y. Asimismo, una función cerrada cumple que la imagen de un conjunto cerrado es un conjunto cerrado.
Obsérvese que ni las funciones abiertas ni las cerradas requieren ser continuas. Aunque sus definiciones parecen naturales, las funciones abiertas y cerradas son mucho menos importantes que las funciones continuas. Una función f: X → Y es continua si la preimagen de cualquier conjunto abierto de Y es abierto en X, es decir: si la pre imagen de cada conjunto cerrado de Y es cerrado en X. Deberá cumplir que es biunívoca, continua y cerrada.Reciben esta denominación las formas que se muestran continuidad de contornos en su perímetro.Cada hilomorfismo es abierto, cerrado, y continuo. De hecho, una función continua biyectiva es un homeomorfismo si es abierta, o equivalentemente, si es cerrada.
Si Y tiene la topología discreta (es decir todos los subconjuntos son abiertos y cerrados) entonces cada función f: X → Y es abierta y cerrada (pero no necesariamente continua).
Siempre que tengamos un producto de espacios topológicos X = ΠXi, entonces las proyecciones naturales pi: X → Xi son abiertas (así como continuas). Puesto que las proyecciones de los fibrados y cubrimientos son local mente proyecciones naturales de los productos, éstos son también funciones abiertas (nótese que las proyecciones del producto no necesitan ser cerradas, considérese por ejemplo la proyección p1: R ² → R en el primer componente; A = {(x,1/x): x ≠ 0} es cerrado en R², pero p1(A) = R -{0} que no es cerrado).
A cada punto de la circunferencia unidad podemos asociar el ángulo que forma el eje X positivo con el radio que une dicho punto con el origen. Esta función de la circunferencia unidad al intervalo semi-abierto [0, 2π) es biyectiva, abierta, y cerrada, pero no continua. Esto muestra que la imagen de un espacio compacto bajo una función abierta o cerrada no necesita ser compacta. También obsérvese que si consideramos esto como función de la circunferencia unidad a los números reales, entonces no es ni abierto ni cerrado. Especificar el codominio es esencial.
La función f: R → R con f(x) = x² es continua y cerrada, pero no abierta.
La función parte entera de R a Z es abierta y cerrada (porque Z tiene la topología discreta). Este ejemplo muestra que la imagen de un espacio conexo bajo una función abierta o cerrada no necesita ser conexa.
funciones abiertas y cerradas .- ...........................:http://rua.ua.es/dspace/bitstream/10045/26438/1/Calculo%20II.pdf
En álgebra abstracta, una función compuesta es una función formada por la composición o aplicación sucesiva de otras dos funciones. Para ello, se aplica sobre el argumento la función más próxima al mismo, y al resultado del cálculo anterior se le aplica finalmente la función restante.
Usando la notación matemática, la función compuesta g ∘ f: X → Z expresa que (g ∘ f)(x) = g(f(x)) para todo x perteneciente X.
A g ∘ f se le llama composición de f y g. Nótese que se nombra no siguiendo el orden de escritura, sino el orden en que se aplican las funciones a su argumento.De manera formal, dadas dos funciones f: X → Y y g: Y → Z, donde la imagen de f está contenida en el dominio de g, se define la función composición (g ∘ f ): X → Z como (g ∘f)(x) = g (f(x)), para todos los elementos de X.
También se puede representar de manera gráfica usando la categoría de conjuntos, mediante un diagrama conmutativo:
- La composición de funciones es asociativa, es decir:
- La composición de funciones en general no es conmutativa, es decir:
- Por ejemplo, dadas las funciones numéricas f(x)=x+1 y g(x)=x², entonces f(g(x))=x²+1, en tanto que g(f(x))=(x+1)².
- La inversa de la composición de dos funciones es:
Función compuesta
Dadas dos funciones f(x) y g(x), se llama función compuesta de f con g, y escribimos g o f, a aquella función en la que la imagen de un número real x es el resultado de actuar sucesivamente sobre x primero f y después g. | |
Para hallar la expresión analítica de la función compuesta de dos funciones se aplica el resultado anterior:
(gof) (x) = f[g(x)].
Ejemplo: Sean las funciones f(x) = 3x - 2 y g(x) = 2x + 5; entonces la función compuesta de f con g es (gof)(x) = g[f(x)] = g(3x - 2) = 2(3x - 2) + 5 = 6x - 4 + 5 = 6x + 1.En el razonamiento anterior se ha tenido en cuenta que si g(x) = 2x + 5, y por lo tanto, g(3x - 2) = 2(3x - 2) + 5. Propiedades de la composiciónASOCIATIVA: Dadas tres funciones cualesquiera f(x), g(x) y h(x) se cumple que ho(gof) = (hog)of.CONMUTATIVA: La composición de funciones en general no es conmutativa, es decir, gof y fog son en general dos funciones distintas. En el ejemplo anterior (gof)(x) =6x + 1, sin embargo, (fog)(x) = f[g(x)] = f(2x + 5) = 3(2x + 5) - 2 = 6x + 15 - 2 = 6x + 13, luego las funciones gof y fog son distintas. FUNCIÓN IDENTIDAD: La función i(x) = a que hace corresponder a cada número real con él mismo, al componerla con cualquier función f(x) da de resultado f(x). Además i(x) conmuta con todas las funciones, por tanto i(x) es el elemento neutro de la composición de funciones. |
No hay comentarios:
Publicar un comentario