REPRODUCCIÓN.
|
|
|
|
|
LAS FUNCIONES DE LOS SERES VIVOS:
4. La función de reproducción:
|
4.a. La reproducción asexual:
|
|
4.b. La reproducción sexual en animales:
|
|
4.c. La reproducción en las plantas sin flores:
|
|
|
4.d. Reproducción de las plantas con flores:
|
|
|
|
|
|
TIPOS DE REPRODUCCIÓN
Uno de los aspectos más importantes de los seres vivientes es su capacidad de autorreproducirse. A todo organismo le llega el momento en que sus capacidades de metabolismo, crecimiento e irritabilidad se vuelven insuficientes para mantener en contra de otras fuerzas su compleja organización. El ataque de depredadores, la acción de parásitos, las épocas de hambre, otros cambios dañinos del ambiente, o simplemente aquellos procesos no bien definidos que denominamos envejecimiento, llevan finalmente a la muerte del organismo. Sin embargo, la especie sobrevive por un periodo de tiempo mayor que el periodo de vida de cualquiera de sus individuos. Esto se logra mediante la producción de nuevos individuos por parte de los individuos de mayor edad antes de que estos mueran.
Muchos de los principales problemas de la biología conciernen a la capacidad de los seres vivos de producir copias de sí mismos.
En los seres vivos se presentan dos modos diferentes de producir cría. Uno de estos modos es la reproducción sexual; esto es, la reproducción de nuevos individuos, en los cuales se combina la información genética de las células diferentes, generalmente provenientes, a su vez, de dos padres distintos. En la mayoría de los organismos, estas células son los gametos. En el otro modo de reproducción toma parte solamente un progenitor. Se llama reproducción asexual.
" REPRODUCCIÓN ASEXUAL "
La reproducción asexual consiste en la reproducción de la cría sin necesidad de la unión de dos gametos. Es común en los microorganismos, plantas y animales de organización simple. Puede llevarse a efecto por diversos específicos.
REPRODUCCIÓN ASEXUAL EN ORGANISMOS UNICELULARES.
El método más generalizada de reproducción asexual entre los organismos unicelulares es la fisión. El organismo se divide en dos partes aproximadamente iguales. Cada una de estas crece hasta alcanzar el tamaño completo y el proceso puede renovarse. Bajo condiciones ideales, las bacterias pueden reproducirse por fisión cada veinte o treinta minutos. La amiba y la mayoría de los demás protozoos también se reproducen de esta manera.
La reproducción asexual de las células de la levadura ocurre mediante gemación. La gemación difiere de la fisión en que las dos partes producidas no son de igual tamaño. En las células de levadura se forma un abultamiento que se denomina yema en cierta porción de la pared. El núcleo de la célula progenitora se divide y uno de los núcleos hijos pasa a la yema. Bajo condiciones favorables, la yema puede producir a la vez otra yema antes de que se separe finalmente de la célula progenitora.
REPRODUCCIÓN ASEXUAL EN ORGANISMOS MULTICELULARES.
LA GEMACIÓN
El termino gemación se utiliza también para describir la reproducción asexual de muchos organismos multicelulares. Trozos de carne de cerdo deficientemente conocidos pueden contener cisticercos de la <>, Taenia solium. Los cisticercos constan de una cápsula que contiene el escolex. Cuando el hombre ingiere uno de tales cisticercos, el jugo gástrico disuelve la pared de la cápsula. El escolex da la vuelta hacia afuera y se adhiere mediante ventosos y ganchos a la pared del intestino. En seguida produce yemas en su extremo posterior que reciben el nombre de proglotis.
Estas permanecen adheridas unas con otras. Cuando maduran se desarrollan órganos de reproducción sexual. Los proglotis que alcanzan la madurez se desprenden eventualmente y son expulsados con los excrementos. Antes de que esto ocurra, la cadena puede alcanzar una longitud de seis metros y de contener más de mil proglotis. Aunque solo existen nervios en forma rudimentaria, órganos excretorios y estructurasmusculares compartidas por los proglotis, estos pueden considerarse como un individuo separado.
Las plantas presentan también reproducción vegetativa. En algunas especies se forman tallos horizontales, los cuales originan nuevos individuos. Estos tallos pueden crecer por debajo del suelo (trizomas) o sobre la superficie del terreno (estolones). Las plantas de jardín bryophillum se vale de sus hojas para llevar a efecto la reproducción asexual. A lo largo de los márgenes de la hoja se forman pequeñas replicas de las plantas dotadas de raíces y tallos.
ESPORULACIÓN
En los hongos y ciertas plantas, la reproducción asexual se efectúa por la formación de esporas. Estas son cuerpos pequeños que contienen un núcleo y una pequeña porción de citoplasma. Las esporas de los organismos terrestres, son por lo general, muy livianas y poseen una pared protectora. Estos dos rasgos determinan que la esporulación sea algo más que un simple mecanismo de reproducción. Su tamaño pequeño y su peso liviano las habilita para ser transportadas a grandes distancias por medio de corrientes de aire. Así las esporas funcionan como agentes de dispersión , que hacen posible la propagación del organismo en nuevos lugares.
La cubierta resistente de la espora desempeña a menudo otra función útil. Permite que la placa se mantenga protegida en estado de vida latente a través de periodos de los cuales prevalecen condiciones desfavorables que serían fatales `para el organismo en proceso de crecimiento vegetativo activo. No es sorprendente que este tipo de esporas se produzcan más rápidamente cuando las condiciones de temperatura, humedad oalimentación se tornan desfavorables.
Ciertas algas verdes y en los hongos acuáticos, las esporas no representan estados de reposo. En Chlamydomonas una sola célula se divide de una a tres veces, y da origen a dos u ocho pequeñas zoosporas. Cada una esta dotada de su núcleo, citoplasma y dos flagelos. Después de haber sido liberado, cada zoospora crece hasta alcanzar el tamaño de la célula madre. Algunas algas sedimentarias utilizan las zoosporas no solo como mecanismo de reproducción, sino también como medio de dispersión. Con ayuda de los flagelos nadan y dispersan la especie a nuevos lugares.
Los hongos producen esporas en abundancia. Un solo micelio de lycoperdon produce alrededor aproximadamente 700 millones de esporas en cada período en sus esporangios. Por medio de aviones, se han podido recoger esporas del hongo de la roya del trigo a una altura de 4300 metros. Si se deja un pedazo de pan húmedo (que no contenga sustancias inhibidoras del crecimiento del moho) en un lugar caliente, oscuro y expuesto a las corrientes del aire se desarrolla un micelio abundante y exuberante que muestra cuan amplia es la distribución de las esporas de este hongo. Los musgos, los licopodios y los helechos producen también enorme cantidad de esporas pequeñas que se dispersan por el viento y sirven para propagar la especie a nuevas localidades.
FRAGMENTACIÓN
Algunas plantas y animales llevan acabo la reproducción sexual por fragmentación. En estas especies el cuerpò del organismo se fragmenta en varias partes; cada una de ellas puede luego regenerar todas las estructuras del organismo adulto. Una vez que el gusano completa el crecimiento, se rompe en ocho o nueve fragmentos. Cada uno de ellos desarrolla luego un gusano adulto que repite el proceso.
Por lo general, el proceso de fragmentación depende de factores externos. Las algas pardas y verdes de las costas marinas se rompen a menudo en pedazos debido a la acción de las olas. Cada fragmento puede crecer hasta alcanzar el tamaño completo. También en el agua dulce los fragmentos de las algas frecuentemente se rompen. Mediante la fisión celular cada fragmento se establece rápidamente el filamento completo.
Los jardineros se valen de manera deliberada de la fragmentación para reproducir asexualmente variedades de sedas de plantas. Esto se hace mediante estacas. Si la operación se hace con cuidado, las estacas desarrollan raíces y hojas que pueden continuar existiendo independientemente.
NATURALEZA DE LA REPRODUCCIÓN ASEXUAL
Los tres tipos de reproducción mencionados existen en la naturaleza, independientemente de que el hombre los aproveche o no para satisfacer sus propias necesidades. Por el contrario, el injerto es un método de reproducción asexual de las plantas, inventado deliberadamente por el hombre para producir más individuos de una variedad deseada. Unicamente los fruticultores reproducen de manera deliberada manzanos a partir de las semillas. Sin embargo, no lo hacen debido a los frutos que podrían producir, si no para utilizar su sistema radical vigoroso.
Después de un año de crecimiento la parte aérea de la planta es suprimida y se toma un vástago (el injerto) de un árbol maduro de la variedad deseada, que se inserta en una muesca previamente hecha en el tocon (el patrón). Mientras los cambiumes del injerto y del patrón permanezcan unidos y se tomen precauciones para prevenir infección o desacación, el injerto crecerá. Obtendrá el agua y los minerales gracia al sistema radical del patrón; sin embargo, los frutos que eventualmente produzcan serán idénticos (suponiendo que el cultivo se haga en condiciones ambientales similares) a los frutos del árbol del cual fue tomado el injerto.
La industria vinícola ilustra de manera excelente la necesidad de que los ambientes eran similares. La mayoría de los viñedos franceses provienen de parrales propagados vegetativamente a partir de variedades procedentes de California. Sin embargo, las uvas de Francia (y los vinos que de ella se obtienen) son diferentes de aquellos que se producen en California.
La manzana McIntosh es una de las muchas variedades comunes de manzanas que crecen en los Estados Unidos y el Canadá. El primer manzano McIntosh fue hallado hace más de 150 años en la granja de John McIntosh en Ontario, Canadá; había crecido a partir de una semilla. La nuera de McIntosh supo apreciar las cualidades del fruto. Además, sabía que sería inútil tratar de obtener otros árboles del mismo tipo a partir de semillas procedentes de las manzanas producidas por este árbol particular. Las semillas se desarrollan como resultado de la reproducción sexual. En su formación intervienen dos progenitores y, así, mientras uno de ellos podría ser un manzano McIntosh, el otro progenitor podría ser probablemente un árbol vecino de otra variedad. La descendencia poseería las características de ambos progenitores. Quizás producirían mejores manzanas, pero quizás acaso peores; en ningún caso sería un manzano McIntosh. Así, la única manera de obtener nuevos manzanos McIntosh disponibles para distribuir a otros cultivadores de manzanos era la reproducción asexual. Vástagos obtenidos del árbol original e injertados en patrones de cualquier variedad produjeron manzanos McIntosh. Todos los centenares de miles de manzanos McIntosh que existen ahora descienden de un vástago de aquel primer árbol. O, dicho en otras palabras, todos estos árboles forman un clon. Tales árboles poseen idéntico patrimonio genético, puesto que cada uno ha sido producido por la división continuada de las células de aquel primer árbol.
La continuidad de las características de una generación de células en la próxima generación es explotada admirablemente en la industria cervecera. El aroma de la cerveza depende de un buen número de factores, pero uno de los más importantes es la pertenencia a una determinada cepa de la levadura utilizada en el proceso de fermentación. En el caso típico, varios kilogramos de células de la levadura se colocan en una cuballena de diversos ingredientes, inclusive carbohidratos que sirven como fuente de energía. Después de 4 ó 5 días, la cantidad de levadura en la cuba se habrá tri o cuadruplicado. Una parte de esta población de levadura se retira de la mezcla y se preserva cuidadosamente con objeto de ser utilizada para iniciar la próxima fermentación de cerveza. En todo momento tiene que vigilarse que no ocurra contaminación de la cepa de la levadura por otros microorganismos. Gracias a tales precauciones, la misma cepa de la levadura puede ser utilizada durante décadas en la producción de cerveza de calidad única.
Aun con el lento crecimiento que tiene lugar bajo las condiciones utilizadas en el proceso de fabricación de cerveza, después de unos 20 años las células que están utilizándose en el proceso son el producto de 3000 generaciones; sin embargo, los rasgos característicos de las células de la levadura originales han permanecido inmodificados.
Estos ejemplos de reproducción asexual son útiles por cuanto revelan el rasgo esencial de este método de reproducción. En todos los tipos de reproducción asexual la descendencia resulta idéntica al progenitor en todos los aspectos, mientras crezca en condiciones ambientales similares a las de este. Si una especie dada prospera con éxito en su hábitat, toda variación heredable en la descendencia puede resultar desventajosa. La reproducción asexual permite producir nuevos individuos que probablemente no presentarán tales variaciones. O sea: que tiende a preservar el statu quo.
En todas las formas de reproducción asexual se producen nuevas células a partir de células viejas. Tal como demuestra el ejemplo del manzano McIntosh, estas nuevas células conservan los mismos moldes hereditarios de sus progenitores.
II.-GENETICA
LA OBRA DE MENDEL
Cuando los seres vivos se reproducen asexualmente , sus descendientes se desarrollan y se convierten en copias exactas de sus progenitores, siempre y cuando se críen bajo condiciones similares. En cambio, cuando los seres vivos se reproducen sexualmente, sus descendientes desarrollan rasgos diferentes, unos con aspecto de otros y también con respecto de cada uno de sus padres. Cuando se aparean un perro pastor y un pastor alemán sus descendientes son también perros; de tal cruce no resulta una especie nueva de animal. Sin embargo, los descendientes no son claramente ni perro pastor ni pastor alemán. Mucho antes de que los biólogos descubrieran varios de los hechos de la mitosis y la meiosis, buscaban descubrir reglas que explicasen cómo las características de la descendencia se relacionaba con las de sus padres y las de los padres de sus padres.
De entre las teorías formuladas para explicar cómo se heredan las características, dos merecen especial mención. Una de ellas es la de Mendel, que proporcionó el fundamento sobre el cual se ha basado toda la investigación genética posterior. La otra, la teoría de la herencia de los caracteres adquiridos, no ha podido superar la comprobación científica; a pesar de eso, continua teniendo defensores.
LA TEORÍA DE LA HERENCIA DE LOS CARACTERES ADQUIRIDOS
Esta teoría afirma simplemente que los rasgos adquiridos por los padres durante su existencia pueden ser transmitidos a sus descendientes. La teoría, por lo general, suele estar asociada con el nombre de Lamarck, biólogo francés que la utilizó en el intento de explicar las numerosas y llamativas adaptaciones al ambiente que presentan las plantas y los animales. Su ejemplo más famoso fue el de la jirafa.
Lamarck afirmaba que el cuello largo de la jirafa evolucionó como resultado de varias generaciones de jirafas que tenían que estirar sus cuellos para alimentarse de con las hojas de los árboles. Cada generación transmitió a sus descendientes el pequeño incremento en la longitud del cuello ocasionado por el continuo estiramiento.
¿Hay alguna evidencia de que un fenómeno semejante pueda ocurrir? A pesar de los intentos repetidos para probar que los cambios corpóreos adquiridos por un individuo pueden ser transmitidos a sus descendientes, todavía no se ha podido descubrir evidencia alguna. Los primeros experimentos efectuados para tratar de resolver el problema consistieron en remover quirúrgicamente alguna parte de un cuerpo; por ejemplo, la cola de un ratón. Aún después de haber efectuado tal operación a través de varias generaciones, los ratones nacían siempre con cola, la cual continuaba siendo tan larga como de costumbre.
En efecto, los experimentadores no tenían sino que observarlas para corroborar sus hallazgos. Durante innumerables generaciones los criadores de ovejas las colas de sus corderos y el proceso sigue todavía cumpliéndose en cada nueva generación. Aunque se llevaron a cabo ensayos más complicados para modificar la herencia mediante cambios del medio, nada pudo lograrse.
¿Por que no? Para que los cambios efectuados en el cuerpo de los padres pudieran ser transmitidos a las descendencias, tendrían que ser incorporados en los espermatozoos o en los óvulos, puesto que estos son el único eslabón entre los cuerpos de los progenitores y los cuerpos de los descendientes. Quizás podría lograrse tal resultado si las células especializadas del cuerpo sobre las cuales pudiera efectuarse alguna alteración, produjeran luego los gametos. Pero estas células no son las que los producen. Desde hace muchos años se sabe que en los animales las células del cuerpo que producen gametos son segregadas en las primeras etapas del desarrollo embrionario. De hecho, una niña recién nacida ya ha formado y comenzado la primera división meiótica de donde provendrán todos y cada uno de los óvulos maduros que algún día producirá.
El biólogo alemán Weismann incorporó estas ideas en su teoría de la continuidad del germoplasma. De acuerdo con su teoría, los organismos multicelulares están constituidos por células que producen gametos o germoplasma y por células que constituyen el resto del cuerpo que denominó somatoplasma. Weismann consideró al germoplasma inmortal. De ello habría que deducir la existencia de una cadena ininterrumpida de gametos y embriones que se remontarían hasta el comienzo de la vida. En cada generación el embrión que se desarrolla a partir del cigoto no solamente forma germoplasma para la generación siguiente, sino además las células que compondrán el cuerpo; es decir, el somatoplasma del organismo.
De acuerdo con esta teoría, el somatoplasma simplemente proporciona albergue al germoplasma, teniendo únicamente que cuidar de que el germoplasma se halle protegido, reciba alimento y transmita el germoplasma al sexo contrario, con el fin de crear la próxima generación. El viejo acertijo sobre qué fue primero, la gallina o el huevo, dejaba de ser un problema para Weismann. De acuerdo con su teoría, la gallina es simplemente un dispositivo del huevo que posibilita la postura de otro huevo.
La idea esencial de la teoría de Weismann fue demostrada admirablemente en 1909 por los científicos americanos W. E. Castle y John C. Phillips. Estos investigadores le sacaron los ovarios a una conejilla de Indias albina y los sustituyeron por los de una de color negro. Luego aparearon esta conejilla con un macho albino, pero en lugar de obtener descendientes albinos como normalmente debería esperarse, los descendientes resultaron negros. (Los apareamientos entre conejillos de Indias albinos y negros siempre producen descendientes negros). Los patrones genéticos de los óvulos no habían experimentado alteración al madurar en el cuerpo de un animal diferente.
TEORÍA DE MENDEL:
SU FUNDAMENTO
Las actuales teorías sobre la herencia fueron elaboradas por primera vez por el monje austríaco Gregor Mendel. De 1858 a 1866, Mendel trabajó en el jardín de su monasterio, en la ciudad de Brü nn (ahora Brno), y se ocupó en llevar a cabo experimentos de cruce de guisante y de examinar las características de los descendientes obtenidos a través de tales cruzamientos.
La decisión de Mendel de trabajar con guisantes comunes de jardín resultó excelente. La planta es resistente y crece rápidamente. Como en muchas leguminosas, los pétalos de la flor encierran los órganos sexuales completamente. Estos son los estambres, que producen polen (portadores de los gametos masculinos) y el pistilo, que produce el gameto femenino u óvulo. Aunque ocasionalmente los insectos pueden penetrar en los órganos sexuales, la norma es la autofecundación. Mendel pudo abrir los botones florales y retirar los estambres antes de que maduraran. Fecundando luego el pistilo con polen de otra planta, Mendel pudo efectuar fertilización cruzada entre las dos plantas.
El haber escogido guisantes de jardín como objeto de estudio resultó también afortunado, dada la existencia de muchas variedades diferenciadas las unas de las otras de manera contundente. Algunas producían (después del secamiento) semillas arrugadas; otras semillas lisas y redondas; semillas con cotiledones verdes; otras semillas con cotiledones amarillos; algunas producían vainas verdes; otras vainas amarillas; algunas flores blancas; otras flores rojizas. Mendel decidió estudiar estas características apareadas (y otras tres más) por cuanto eran fácilmente identificables y por cuánto los apareamientos resultaron fértiles, generación tras generación. Es decir, que mientras se mantuviera la polinización normal, estas variedades continuaban produciendo descendientes idénticos a sus progenitores, en lo concerniente a las características objeto de estudio.
En lo que respecta a otras características las variedades de Mendel diferían, por ejemplo, en el tamaño la hoja y en el de la flor. Mendel ignoró sabiamente estas diferencias en sus estudios simplemente por cuánto no eran susceptibles de clasificarse dentro de un esquema disyuntivo < < del tipo> > o < < esto o el otro> > . Los guisantes de Mendel producían o bien semillas redondas, o bien semillas arrugadas. No se presentaban tipos intermedios. De otra parte, el tamaño de las hojas y de las flores presentaba un amplio rango de variaciones. No existía la posibilidad de colocarlos en una u otra categoría distinta.
De modo que la decisión de Mendel de limitar de esta manera el objetivo de sus experimentos fue ciertamente uno de los factores importantes que los condujeron al éxito.
No hay comentarios:
Publicar un comentario