lunes, 31 de diciembre de 2018

QUÍMICA

MAGNITUDES QUÍMICAS - ESTRUCTURAS QUÍMICAS

Estado de agregación de la materia

(Redirigido desde «Estados de la materia»)
Ir a la navegaciónIr a la búsqueda
Este diagrama muestra la nomenclatura para las diferentes transiciones de fase su reversibilidad y relación con la variación de la entalpía.
En física y química se observa que, para cualquier sustancia o mezcla, modificando sus condiciones de temperatura o presión, pueden obtenerse distintos estados o fases, denominados estados de agregación de la materia, en relación con las fuerzas de uniónde las partículas (moléculas, átomos o iones) que la constituyen.1
Todos los estados de agregación poseen propiedades y características diferentes; los más conocidos y observables cotidianamente son cuatro, llamados fases sólidalíquidagaseosa2​ y plasmática.3​ También son posibles otros estados que no se producen de forma natural en nuestro entorno, por ejemplo: condensado de Bose-Einstein,4​ condensado fermiónico y estrellas de neutrones. Se cree que también son posibles otros, como el plasma de quarks-gluones.



Estado sólido[editar]

Los objetos en estado sólido se presentan como cuerpos de forma definida; sus átomos a menudo se entrelazan formando estructuras estrechas definidas, lo que les confiere la capacidad de soportar fuerzas sin deformación aparente. Son calificados generalmente como duros así como resistentes, y en ellos las fuerzas de atracción son mayores que las de repulsión. En los sólidos cristalinos, la presencia de espacios intermoleculares pequeños da paso a la intervención de las fuerzas de enlace, que ubican a las celdillas en formas geométricas. En los amorfos o vítreos, por el contrario, las partículas que los constituyen carecen de una estructura ordenada.
Las sustancias en estado sólido suelen presentar algunas de las siguientes características:
  • Cohesión elevada.
  • Tienen una forma definida y memoria de forma, presentando fuerzas elásticas restitutivas si se deforman fuera de su configuración original.
  • A efectos prácticos son incompresibles.
  • Resistencia a la fragmentación.
  • Fluido muy bajo o nulo.
  • Algunos de ellos se subliman.

Estado líquido[editar]

Si se incrementa la temperatura de un sólido, este va perdiendo forma hasta desaparecer la estructura cristalina, alcanzando el estado líquido. Característica principal: la capacidad de fluir y adaptarse a la forma del recipiente que lo contiene. En este caso, aún existe cierta unión entre los átomos del cuerpo, aunque mucho menos intensa que en los sólidos. El estado líquido presenta las siguientes características:
  • Cohesión menor.
  • Poseen movimiento de energía cinética.
  • Son fluidos, no poseen forma definida, ni memoria de forma por lo que toman la forma de la superficie o el recipiente que lo contiene.
  • En el frío se contrae (exceptuando el agua).
  • Posee fluidez a través de pequeños orificios.
  • Puede presentar difusión.
  • Son poco compresibles.

Estado gaseoso[editar]

Se denomina gas al estado de agregación de la materia compuesto principalmente por moléculas no unidas, expandidas y con poca fuerza de atracción, lo que hace que los gases no tengan volumen y forma definida, y se expandan libremente hasta llenar el recipiente que los contiene. Su densidad es mucho menor que la de los líquidos y sólidos, y las fuerzas gravitatorias y de atracción entre sus moléculas resultan insignificantes. En algunos diccionarios el término gas es considerado como sinónimo de vapor, aunque no hay que confundir sus conceptos: vapor se refiere estrictamente a aquel gas que se puede condensar por presurización a temperatura constante.
Dependiendo de sus contenidos de energía o de las fuerzas que actúan, la materia puede estar en un estado o en otro diferente: se ha hablado durante la historia, de un gas ideal o de un sólido cristalino perfecto, pero ambos son modelos límites ideales y, por tanto, no tienen existencia real.5
En los gases reales no existe un desorden total y absoluto, aunque sí un desorden más o menos grande.
En un gas, las moléculas están en estado de caos y muestran poca respuesta a la gravedad. Se mueven tan rápidamente que se liberan unas de otras. Ocupan entonces un volumen mucho mayor que en los otros estados porque dejan espacios libres intermedios y están enormemente separadas unas de otras. Por eso es tan fácil comprimir un gas, lo que significa, en este caso, disminuir la distancia entre moléculas. El gas carece de forma y de volumen, porque se comprende que donde tenga espacio libre allí irán sus moléculas errantes y el gas se expandirá hasta llenar por completo cualquier recipiente.

Estado plasmático[editar]

El plasma es un gas ionizado, es decir, que los átomos que lo componen se han separado de algunos de sus electrones. De esta forma el plasma es un estado parecido al gas pero compuesto por aniones y cationes (ionescon carga negativa y positiva, respectivamente), separados entre sí y libres, por eso es un excelente conductor. Un ejemplo muy claro es el Sol.
En la baja atmósfera terrestre, cualquier átomo que pierde un electrón (cuando es alcanzado por una partícula cósmica rápida) se dice que está ionizado. Pero a altas temperaturas es muy diferente. Cuanto más caliente está el gas, más rápido se mueven sus moléculas y átomos, (ley de los gases ideales) y a muy altas temperaturas las colisiones entre estos átomos, moviéndose muy rápido, son suficientemente violentas para liberar los electrones. En la atmósfera solar, una gran parte de los átomos están permanentemente «ionizados» por estas colisiones y el gas se comporta como un plasma.
A diferencia de los gases fríos (por ejemplo, el aire a temperatura ambiente), los plasmas conducen la electricidad y son fuertemente influidos por los campos magnéticos. La lámpara fluorescente, contiene plasma (su componente principal es vapor de mercurio) que calienta y agita la electricidad, mediante la línea de fuerza a la que está conectada la lámpara. La línea, positivo eléctricamente un extremo y negativo el otro, causa que los iones positivos se aceleren hacia el extremo negativo, y que los electrones negativos vayan hacia el extremo positivo. Las partículas aceleradas ganan energía, colisionan con los átomos, expulsan electrones adicionales y mantienen el plasma, aunque se recombinen partículas. Las colisiones también hacen que los átomos emitan luz y esta forma de luz es más eficiente que las lámparas tradicionales. Los letreros de neón y las luces urbanas funcionan por un principio similar y también se usaron en electrónicas.

Perfil de la ionosfera[editar]

La parte superior de la ionosfera se extiende en el espacio algunos cientos de kilómetros y se combina con la magnetosfera, cuyo plasma está generalmente más rarificado y también más caliente. Los iones y los electronesdel plasma de la magnetosfera provienen de la ionosfera que está por debajo y del viento solar y muchos de los pormenores de su entrada y calentamiento no están claros aún.
Existe el plasma interplanetario, el viento solar. La capa más externa del Sol, la corona, está tan caliente que no sólo están ionizados todos sus átomos, sino que aquellos que comenzaron con muchos electrones, tienen arrancados la mayoría (a veces todos), incluidos los electrones de las capas más profundas que están más fuertemente unidos. En la corona del Sol se ha detectado la radiación electromagnética característica del hierroque ha perdido 13 electrones.
Esta temperatura extrema evita que el plasma de la corona permanezca cautivo por la gravedad solar y, así, fluye en todas direcciones, llenando el Sistema Solar más allá de los planetas más distantes.
Propiedades del plasma
Hay que decir que hay 2 tipos de plasma, fríos y calientes:
  • En los plasmas fríos, los átomos se encuentran a temperatura ambiente y son los electrones los que se aceleran hasta alcanzar una temperatura de 5000 °C. Pero como los iones, que son muchísimo más masivos, están a temperatura ambiente, no queman al tocarlos.
  • En los plasmas calientes, la ionización se produce por los choques de los átomos entre sí. Lo que hace es calentar un gas mucho y por los propios choques de los átomos entre sí se ionizan. Estos mismos átomos ionizados también capturan electrones y en ese proceso se genera luz (por eso el Sol brilla, y brilla el fuego, y brillan los plasmas de los laboratorios).

Condensado de Bose-Einstein[editar]

Esta nueva forma de la materia fue obtenida el 5 de julio de 1995, por los físicos Eric A. CornellWolfgang Ketterle y Carl E. Wieman, por lo que fueron galardonados en 2001 con el Premio Nobel de física. Los científicos lograron enfriar los átomos a una temperatura 300 veces más baja de lo que se había logrado anteriormente. Se le ha llamado "BEC, Bose - Einstein Condensado" y es tan frío y denso que aseguran que los átomos pueden quedar inmóviles. Todavía no se sabe cuál será el mejor uso que se le pueda dar a este descubrimiento. Este estado fue predicho por Satyendra Nath Bose y Albert Einstein en 1927.

Condensado de Fermi[editar]

Creado en la universidad de Colorado por primera vez en 1999, el primer condensado de Fermi formado por átomos fue creado en 2003. El condensado fermiónico, considerado como el sexto estado de la materia, es una fase superfluida formada por partículas fermiónicas a temperaturas bajas. Está cercanamente relacionado con el condensado de Bose-Einstein. A diferencia de los condensados de Bose-Einstein, los fermiones condensados se forman utilizando fermiones en lugar de bosones.
Dicho de otra forma, el condensado de Fermi es un estado de agregación de la materia en la que la materia adquiere superfluidez. Se crea a muy bajas temperaturas, extremadamente cerca del cero absoluto.
Los primeros condensados fermiónicos describían el estado de los electrones en un superconductor. El primer condensado fermiónico atómico fue creado por Deborah S. Jin en 2003. Un condensado quiral es un ejemplo de un condensado fermiónico que aparece en las teorías de los fermiones sin masa con rotura de simetría quiral.

Supersólido[editar]

Este material es un sólido en el sentido de que la totalidad de los átomos del helio-(4) que lo componen están congelados en una película cristalina rígida, de forma similar a como lo están los átomos y las moléculas en un sólido normal como el hielo. La diferencia es que, en este caso, “congelado” no significa “estacionario”.
Como la película de helio-4 es tan fría (apenas una décima de grado sobre el cero absoluto), comienzan a imperar las leyes de incertidumbre cuántica. En efecto, los átomos de helio comienzan a comportarse como si fueran sólidos y fluidos a la vez. De hecho, en las circunstancias adecuadas, una fracción de los átomos de heliocomienza a moverse a través de la película como una sustancia conocida como “superfluido”, un líquido que se mueve sin ninguna fricción. De ahí su nombre de “supersólido”.
Se demuestra que las partículas de helio aplicadas a temperaturas cercanas al 0 absoluto cambian el momento de inercia y un sólido se convierte en un supersólido, lo que previamente aparece como un estado de la materia.

Otros posibles estados de la materia[editar]

Existen otros posibles estados de la materia; algunos de estos sólo existen bajo condiciones extremas, como en el interior de estrellas muertas, o en el comienzo del universo después del Big Bang o gran explosión:

Cambios de estado[editar]

Diagrama de los cambios de estado entre los estados sólidolíquido y gaseoso.
Para cada elemento o compuesto químico existen determinadas condiciones de presión y temperatura a las que se producen los cambios de estado, debiendo interpretarse, cuando se hace referencia únicamente a la temperatura de cambio de estado, que ésta se refiere a la presión de la atm. (la presión atmosférica). De este modo, en "condiciones normales" (presión atmosférica, 0 °C) hay compuestos tanto en estado sólido como líquido y gaseoso (S, L y G).
Los procesos en los que una sustancia cambia de estado son: la sublimación (S-G), la vaporización (L-G), la condensación (G-L), la solidificación (L-S), la fusión (S-L), y la sublimación inversa (G-S). Es importante aclarar que estos cambios de estado tienen varios nombres.

 Tipos de cambio de estado[editar]

Son los procesos en los que un estado de la materia cambia a otro manteniendo una semejanza en su composición. A continuación se describen los diferentes cambios de estado o transformaciones de fase de la materia:
  • Fusión: Es el paso de un sólido al estado líquido por medio del calor; durante este proceso endotérmico (proceso que absorbe energía para llevarse a cabo este cambio) hay un punto en que la temperaturapermanece constante. El "punto de fusión" es la temperatura a la cual el sólido se funde, por lo que su valor es particular para cada sustancia. Dichas moléculas se moverán en una forma independiente, transformándose en un líquido. Un ejemplo podría ser un hielo derritiéndose, pues pasa de estado sólido al líquido.
  • Solidificación: Es el paso de un líquido a sólido por medio del enfriamiento; el proceso es exotérmico. El "punto de solidificación" o de congelación es la temperatura a la cual el líquido se solidifica y permanece constante durante el cambio, y coincide con el punto de fusión si se realiza de forma lenta (reversible); su valor es también específico.
  • Vaporización y ebullición: Son los procesos físicos en los que un líquido pasa a estado gaseoso. Si se realiza cuando la temperatura de la totalidad del líquido iguala al punto de ebullición del líquido a esa presión continuar calentándose el líquido, éste absorbe el calor, pero sin aumentar la temperatura: el calor se emplea en la conversión del agua en estado líquido en agua en estado gaseoso, hasta que la totalidad de la masa pasa al estado gaseoso. En ese momento es posible aumentar la temperatura del gas.
  • Condensación: Se denomina condensación al cambio de estado de la materia que se pasa de forma gaseosa a forma líquida. Es el proceso inverso a la vaporización. Si se produce un paso de estado gaseoso a estado sólido de manera directa, el proceso es llamado sublimación inversa. Si se produce un paso del estado líquido a sólido se denomina solidificación.
  • Sublimación: Es el proceso que consiste en el cambio de estado de la materia sólida al estado gaseoso sin pasar por el estado líquido. Un ejemplo clásico de sustancia capaz de sublimarse es el hielo seco.
  • Sublimación inversa: Es el paso directo del estado gaseoso al estado sólido.
  • Desionización: Es el cambio de un plasma a gas.
  • Ionización: Es el cambio de un gas a un plasma.
Es importante hacer notar que en todas las transformaciones de fase de las sustancias, éstas no se transforman en otras sustancias, solo cambia su estado físico.
Los cambios de estado están divididos generalmente en dos tipos: progresivos y regresivos.
  • Cambios progresivos: Vaporización, fusión y sublimación progresiva.
  • Cambios regresivos: Condensación, solidificación y sublimación regresiva.
La siguiente tabla indica cómo se denominan los cambios de estado:

Inicial\FinalSólidoLíquidoGasPlasma
Sólidofusiónsublimación, sublimación progresiva o sublimación directa
Líquidosolidificaciónevaporación o ebullición
Gassublimación inversa, regresiva o deposicióncondensación y licuefacción (licuación)Ionización
PlasmaDesionización



No hay comentarios:

Publicar un comentario