domingo, 26 de abril de 2015

Atlas de histología vegetal y animal



La fase S del ciclo celular da paso a la fase G2, la cual termina con la entrada en la fase M o mitosis. En la fase G2 se acumulan progresivamente aquellas moléculas cuyas actividades serán necesarias durante la fase M. Tradicionalmente se ha considerado como un estado de tránsito entre las fases S y M. Durante esta etapa, sin embargo, se comprueba si ha habido errores durante la replicación del ADN y si se ha producido su duplicación completa. Si éstos defectos son detectados la célula no entrará en fase M y el ciclo celular se detendrá hasta que los daños sean reparados o el ADN sea completamente copiado. Se puede entender que estos mecanismos son críticos para la célula puesto que los errores no detectados pasarán irremediablemente a las células hijas. Durante la fase G2 la células también aumentarán en tamaño y los centrosomas, duplicados durante la fase S, se dirigirán a lugares opuestos de la célula para formar posteriormente el huso mitótico.
Centrosoma y ciclo celular
Centrosoma y ciclo celular.
El límite entre las fases G2 y M no está totalmente claro y algunos autores consideran este cambio en la mitad de la profase mitótica. De cualquier manera, el fin de la fase G2 está mediado por la quinasa dependiente de ciclina (CdK) tipo 1 y por la ciclina B1. La ciclina B1 se sintetiza durante la fase S tardía. Es este complejo, más otras proteínas quinasas y fosfatasas, el que determina si la célula entrará en la fase M, es decir, es un punto de control.


MITOSIS
« Fase G2» Meiosis
En la fase M o mitosis se produce la segregación de los componentes intracelulares en dos células hijas.

Consta de varias etapas: profase, metafase, anafase, telofase y citocinesis.

Profase: condensación de la cromatina, desorganización de algunos orgánulos. Prometafase: desorganización de la envuelta nuclear.

Metafase: ordenación de los cromosomas en la placa ecuatorial, una región equidistante entre los dos centrosomas del huso mitótico.

Anafase: separación de las cromátidas que forman los centrosomas y migración hacia los centrosomas.

Telofase: descondensación de las cromátidas y organización de la envuelta nuclear.

Citocinesis: formación del surco de escisión y separación de los citoplasmas de las dos células hijas. 
La fase M o mitosis supone la división de una célula en dos células hijas. Conlleva una serie de procesos encaminados a repartir los componentes celulares sintetizados durante las fases anteriores del ciclo celular, destacando el ADN duplicado en la fase S, entre las dos células hijas resultantes de una forma generalmente equitativa. La fase M se divide en varias etapas: profase, metafase, anafase, telofase y citocinesis. Algunos autores incluyen a la citocinesis en la telofase. Las tres primeras están relacionadas con las modificaciones que se producen en el ADN: compactación, formación y movimiento de los cromosomas y descondensación. La citocinesis es el proceso de división del citoplasma en dos partes por estrangulamiento celular, lo que provoca la fusión y fisión de la membrana plasmática, dando como resultado dos células independientes. Aunque la mayoría de los procesos que vamos a describir se basan en cambios en la cromatina, hay que tener en cuenta que los orgánulos y demás componentes celulares también sufren procesos de desorganización, respecto a sus formas normales en las fase G1, S y G2, y su posterior reparto entre las células hijas.
Profase
La profase comienza con la condensación del DNA, de manera que llegan a ser visibles las cromátidas de forma aislada, y con la desaparición del nucléolo. La condensación parece estar favorecida por la fosforilación de las histonas que componen la cromatina. En el citoplasma también se producen acontecimientos. Hay unadesorganización parcial de los filamentos del citoesqueleto, lo que hace que las células adquieran una forma redondeada al entrar en mitosis. Hacia el final de la fase S la célula duplica su centrosoma, cuyos descendientes inicialmente permanecen juntos. Cuando se inicia la profase los centrosomas viajan a polos opuestos dentro de la célula, conducidos por proteínas motoras y microtúbulos. Entonces ambos centrosomas polimerizan y organizan un sistema de microtúbulos con una alta inestabilidad dinámica, alternancia entre crecimiento y decrecimiento, que posteriormente formarán el denominado huso mitótico. Los orgánulos, como el retículo endoplasmático y el aparato de Golgi, se fragmentan y disminuye enormemente el tráfico vesicular. La envuelta nuclear todavía no se ha roto.
Centrosoma y ciclo celular
Centrosoma y ciclo celular.
Algunos autores distinguen una fase denominada prometafase en la que se empieza adesorganizar la envuelta nuclear, la cual se fragmenta en pequeñas vesículas, desencadenado por la fosforilación de las proteínas que constituyen la lámina nuclear. Entonces los microtúbulos pueden penetrar entre las cromátidas. Las cromátidas, que al principio presentan una cromatina poco empaquetada se convierten rápidamente en cromosomas típicos por compactación progresiva. Los extremos de los microtúbulos forman uniones con lugares concretos de los cromosomas llamados cinetocoros, localizados en los centrómeros. Cada cromosoma tiene dos cinetocoros. Los microtúbulos que contactan con los cinetocoros se denominan cinetocóricos. Como los cinetocoros están orientados en lugares opuestos, los dos centrosomas envían microtúbulos que contactan con un mismo cromosoma. El número de microtúbulos que contacta con un cinetocoro es variable y en humanos suele ser de 20 a 40, mientras que en las levaduras es uno solo. Otros microtúbulos, partiendo de centrosomas opuestos, no interaccionan con la cromatina sino que lo hacen entre sí. Contactan con sus extremos más y llegan a estabilizarse, deteniéndose la inestabilidad dinámica. Estos microtúbulos se denominan polares.
Cromosomas
Cromatina y cromosomas.

Cohesinas y condensinas
Cohesinas y condensinas.
Metafase
Al final de la profase (o prometafase) las cromátidas hermanas están unidas entre sí y también a los microtúbulos cinetocóricos del huso mitótico. Las dos cromátidas hermanas unidas forman los cromosomas, que son desplazados hacia el centro del huso mitítico, equidistante a los dos centrosomas, formándose la denominada placa ecuatorial. Esto define a la metafase. Los desplazamientos son consecuencia del acortamiento y alargamiento de los microtúbulos, así como de la acción de las proteínas motoras. Durante este periodo los cromosomas se mueven para ocupar su posición enla placa ecuatorial y a veces se desplazan temporalmente fuera de ésta. Ello es indicio del tira y afloja que mantienen los microtúbulos de cada centrosoma.
Anafase
La anafase comienza con la rotura de las conexiones entre cromátidas hermanas a nivel del centrómero gracias a la participación de proteasas, de manera que cada cromátida irá hacia uno de los centrosomas. La velocidad del desplazamiento es normalmente de 1 µm por minuto. Existen dos etapas: la anafase A, en la cual los microtúbulos cinetocóricos se acortan por despolimerización, tanto en el extremo menos como en el más; mientras que en la anafase B los propios centrosomas se separan entre sí, empujados por los microtúbulos polares, favoreciendo aún más la separación de las cromátidas. Esta separación de los centrosomas va acompañada por una elongación de los microtúbulos polares, aportando la fuerza las proteínas motoras, que hace que se deslicen unos microtúbulos polares sobre los otros. También parece que otras proteínas motoras se asocian a los microtúbulos que salen desde los centrosomas en dirección opuesta a las cromátidas y contactan con el cortex celular, tirando de los centrosomas. Son los microtúbulos del áster.
Telofase
Durante esta fase se organiza de nuevo la envuelta nuclear alrededor de cada conjunto de cromátidas que han migrado hacia cada uno de los centrosomas formando los dos núcleos hijos. Esto se produce por defosforilación de las proteínas que constituyen la lámina nuclear. También se forman los poros nucleares y la cromátidas comienzan a descondensarse. Los microtúbulos se han liberado previamente de los cinetocoros.
Citocinesis
La citocinesis comienza durante la anafase y finaliza con la formación de las dos células hijas. El primer indicio del arranque de la citocinesis es la formación de un surco en la superficie celular llamado surco de escisión, que es perpendicular al huso mitótico y se sitúa en una posición ecuatorial. Este surco se forma por la acción de los filamentos de actina y por la miosina. El desplazamiento de unos sobre otros, como ocurre durante la contracción muscular, produce un fenómeno de estrangulamiento. Este anillo es transitorio y se forma sólo durante la citocinesis para después desaparecer. Para completar la citocinesis han de eliminarse los restos del huso mitótico atrapados durante el estrangulamiento, desorganizarse el propio anillo y romperse y sellarse las membranas plasmáticas. Recientemente se ha visto que en las células animales, al igual que en las vegetales, el tráfico vesicular participa en la finalización de la citocinesis: se necesita más membrana y moléculas que lleven a cabo la rotura y sellado de la membrana plasmática, de forma parecida a lo que ocurre con las vesículas del tráfico vesicular.
 Citocinesis animal

Proceso de citocinesis en un cigoto de erizo de mar. La zona más brillante es el huso mitótico. Como se puede observar el plano de división es perpendicular al eje del huso mitótico.
En las células vegetales la citocinesis es diferente a causa de la presencia de la pared celular. Las células hijas se separan, no por la formación de un anillo contráctil sino por la formación de una nueva pared celular en el interior de la célula que se va a dividir. Esta pared nace rodeada de membrana y es perpendicular y central al huso mitótico. Su posición determina la localización de las dos células hijas y por tanto también la dirección de crecimiento de la planta. La formación de esta nueva pared celular está mediada por lo que se denomina elfragmoplasto, que posee como componentes a los restos de los microtúbulos polares del huso mitótico y a vesículas procedentes del aparato de Golgi. Estas vesículas se transportan hasta esta zona por proteínas motoras y se fusionan entre sí y con la pared en crecimiento. En su interior llevan componentes de la pared celular que se irá formando como consecuencia del proceso de fusión vesicular.
 Citocinesis vegetal

Distintas fases de la mitosis desde mitosis (izquierda) hasta telofase (derecha). Se puede osbservar como se va creando progresivamente un pared celular nueva que separa ambos grupos de cromosomas, que formarán los núcleos de las células hijas. A esta estructura en construcción se le denomina fragmoplasto (flecha). También se aprecia en esta figura.

No hay comentarios:

Publicar un comentario