CILIOS y FLAGELOS
| ||
|
Los microtúbulos, elementos del citoesqueleto, tienen una función esencial en la fisiología celular. El entramado de microtúbulos que se extiende en el citosol es muy maleable gracias a su capacidad de polimerización y despolimerización, fundamentalmente en su extremo más. Sin embargo, no todos los microtúbulos de la célula están sometidos a esta "inestabilidad dinámica". Existen estructuras celulares en las células animales, en los gametos de algunas especies vegetales y en organismos unicelulares que poseen haces de microtúbulos altamente organizados y muy estables en cuanto a su disposición y longitud: los centriolos, los cilios y los flagelos. En esta sección vamos a estudiar a los cilios y a los flagelos.
Cilios
Los cilios son expansiones celulares filiformes, de unos 0,25 µm de diámetro y unos 10 a 15 µm de longitud, que aparecen en las células animales y en algunos protozoos. Suelen disponerse densamente empaquetados, a modo de cesped, en las superficies libres de numerosas células, como las que forman los epitelios de los tractos respiratorios, de los conductos del aparato reproductor femenino de mamíferos o de las branquias de los peces y bivalvos. También aparecen en numerosos protozoos. Son estructuras que pueden moverse y su principal misión es la de desplazar fluidos, como ocurre con el mucus del tracto respiratorio, pero también empujan al óvulo a lo largo de las trompas de falopio hasta el útero o mueven el agua alrededor de las branquias. Los organismos unicelulares los usan para moverse ellos mismos o para arremolinar el líquido que les rodea y así atraer alimento. Una función del movimiento ciliar descubierta recientemente está implicada con el establecimiento de la lateralidad de determinadas estructuras de los vertebrados durante el desarrollo embrionario. El tipo de movimiento que realizan es de bateo, a modo de látigo, de manera sincronizada, produciendo una especie de ola que desplaza el fluido en una dirección paralela a la superficie de la célula.
Esquema que ilustra los modelos de movimiento propuestos para los cilios y los flagelos. En cada caso el flujo neto del fluido es diferente.
Se han observado numerosos cilios, denominados cilios primarios, que no funcionan como estructuras móviles. Prácticamente todos los tejidos animales estudiados, excepto las células sanguíneas, poseen cilios primarios: oviductos, neuronas, cartílado, ectodermo de las extremidades en desarrollo, células mesenquimáticas, ventrículos cerebrales, células epiteliales de los conductos urinarios, conductos prancreáticas, células hepáticas, e incluso células en cultivo. La mayoría de estos cilios no son móviles y se pensó que no eran funcionales. Sin embargo, se observó que la membrana ciliar tenía numerosos receptores y canales iónicos, por lo que se le asignó un papel sensorial. Por ejemplo, los receptores olfativos se encuentran en cilios dendríticos y los segmentos externos de los conos y bastones de la retina son en realidad cilios modificados. Algunos de los receptores están más densamente empaquetados en sus membranas que en el resto de la membrana plasmática de la célula. Además, existen numerosas moléculas en el interior del cilio primario que transducen estas señales. La mayor relación superficie/volumen hace que las respuestas intraciliares sean muy intensas frente a señales externas relativamente débiles. Además de sustancias químicas también pueden detectar movimientos de fluidos circundantes, actuando como mecanoreceptores.
Flagelos
Los flagelos son similares a los cilios pero mucho más largos, con unas 150 µm de longitud, y un poco más gruesos. Su principal misión es desplazar a la célula. Son mucho menos numerosos que los cilios en las células que los poseen. Su movimiento también es diferente puesto que no desplazan el líquido en una dirección paralela a la superficie de la célula sino en una dirección paralela al propio eje longitudinal del flagelo. Los flagelos son frecuentes en células móviles como ciertos organismos unicelulares y gametos masculinos.
Estructura
Los cilios y flagelos son estructuras complejas con más de 250 proteínas diferentes. Ambos contienen una estructura central de microtúbulos y otras proteínas asociadas, denominadas conjuntamente como axonema, rodeado todo ello por membrana celular. En su interior, además del axonema, se encuentran una gran cantidad de moléculas solubes que participan en cascadas de señalización y que forman la denominada matriz. Un axonema consta de 9 pares de microtúbulos exteriores que rodean a un par central. A esta disposición se la conoce como9x2 + 2. El par central de microtúbulos contiene los 13 protofilamentos típicos, pero las parejas externas comparten protofilamentos. Los cilios primarios carecen de par central. A uno de los microtúbulos de cada par periférico se le denomina túbulo A y al otro túbulo B. El A es un microtúbulo completo mientras que el B contiene sólo 10 u 11 protofilamentos propios y 2 o 3 compartidos con el A.
Esquema donde se indican los principales componentes de la estructura de un cilio o un flagelo. En los cilios primarios el par central de microtúbulos está ausente.
Esta disposición se mantiene gracias a un entramado de conexiones proteicas internas. Al menos doce proteínas diferentes se han encontrado formando parte del axonema, las cuales están implicadas fundamentalmente en mantener la organización de los microtúbulos. Las parejas de microtúbulos externos están conectadas entre sí mediante una proteína denominada nexina. Los túbulos A de cada pareja están conectados por radios proteicos a un anillo central que encierra al par central de microtúbulos. En los microtúbulos externos aparece una proteína motora asociada llamada dineína que está implicada en el movimiento de cilios y flagelos.
Ultraestructura de un flagelo. Imagen de un ependimocito del canal central de la médula espinal. Par se refiere a pares de microtúbulos y 9(2)+2 significa que el axonema está formado por 9 pares laterales y un par central de microtúbulos.
Los microtúbulos se originan por polimerización a partir de una estructura localizada en el citoplasma celular periférico denominadacuerpo basal. La estructura del cuerpo basal es similar a la de los centriolos, es decir, 9 tripletes de microtúbulos que se disponen formando una estructura cilíndrica. Carece del par central (9x3 + 0). En cada triplete sólo uno de los microtúbulos contiene una forma completa y los otros dos comparten protofilamentos. Entre el cuerpo basal y el axonema del cilio existe una zona de transición que posee sólo los 9 dobletes típicos del cilio pero no el par central. Éste se formará a partir de una estructura llamada placa basal, localizada entre la zona de transición y el doblete interno. Los microtúbulos tienen sus extremos menos localizados en la punta distal de los cilios y flagelos. La parte del cuerpo basal más próxima al interior celular se ancla al citoesqueleto mediante estructuras proteicas denominadasradios ciliares
Además del axonema y sus proteínas asociadas se pueden encontrar otros tres compartimentos en los cilios, sobre todo en los cilios primarios. La membrana ciliar que, en los cilios primarios, contiene numerosos receptores y canales, consistente con la función sensorial. Otro compartimento es la matriz, la fase fluida que ocupa el interior ciliar. La matriz, además de ayudar a matener la estructura del flagelo, también tiene proteínas que transducen la señales generadas en la membrana. Otros dos compartimentos son la base y la parte más distal del cilio. En la base se encuentra el cuerpo basal y complejos proteicos desde los que parten y nuclean los microtúbulos del axonema. En la parte distal se encuentra un entramado proteico complejo donde aparecen proteínas asociadas a los microtúbulos que estabilizan los extremos menos.
¿Cómo se produce el movimiento?
Cuando los cilios o flagelos se separan artificialmente de las células continúan moviéndose hasta que se les acaban las reservas de ATP. Esto implica que tienen movilidad intrínseca. El movimiento se produce por deslizamientos de unos microtúbulos sobre otros. Las proteínas nexinas y los radios proteicos son los que impiden que el flagelo se desorganice. El movimiento de los microtúbulos está producido por la dineína, un motor molecular, puesto que es donde se produce la hidrólisis de ATP y si se elimina el movimiento cesa, aún en presencia de ATP. La dineína se ancla con su zona globular al microtúbulo B y con la zona motora al microtúbulo A del par vecino. El proceso es similar al que se utiliza para el transporte de orgánulos en el citoplasma celular pero en este caso la carga que transporta es otro microtúbulo. Cuando la dineína se activa produce un desplazamiento de un par respecto al otro. Para permitir un movimiento eficiente se necesita una coordinación entre las dineína de los dobletes externos de microtúbulos. El control del movimiento parece depender de las concentraciones de calcio y permite a la célula variar el movimiento de estas estructuras. Una cuestión interesante es que no todas las dineínas se pueden activar a la vez sino de manera sincrónica.
Formación de cilios y flagelos. Cuerpos basales.
Los cilios y flagelos que tendrá una célula se produce durante la diferenciación celular y por tanto se tienen que formar de nuevo. Los microtúbulos se forman a partir de los microtúbulos que forman el cuerpo basal. Pero entonces, ¿quién forma los cuerpos basales? Inicialmente, uno de los centriolos del centrosoma migra hacia la membrana plasmática, contacta con ella y se inicia la polimerización de los túbulos A y B del axonema. Al final del proceso el centriolo se transforma en cuerpo basal. ¿Cómo aporta la célula suficiente cantidad de centriolos? Existen al menos tres formas de producir centriolos: a) por división de los centriolos gracias a un proceso por el que se forman nuevos centriolos a partir de la pared de centriolos preexistentes; b) por la presencia de deuterosomas, que son estructuras proteicas a partir de las cuales los centriolos pueden formarse independientemente de otros centriolos. Esto es importante cuando la célula tiene que crear una gran cantidad de cilios; c) las plantas, que carecen de centriolos, realizan un proceso similar al anterior pero con otro tipo de agregados propios de los vegetales.
|
domingo, 26 de abril de 2015
Atlas de histología vegetal y animal
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario