domingo, 19 de abril de 2015

Atlas de histología vegetal y animal



La célula. 3.Membrana celular 

COMPLEJOS de UNIÓN

Como hemos visto en el apartado anterior las células se anclan a la matriz extracelular y a otras células mediante unas proteínas especializadas. Las integrinas, cadherinas, selectinas e inmunoglobulinas son las más importantes. A veces se producen uniones tan especializadas y desarrolladas que forman estructuras macromoleculares denominadas complejos de unión y uniones focales, los cuales son fundamentales para mantener la cohesión de muchos tejidos, principalmente los epitelios, el tejido muscular y el nervioso.
Los complejos de unión se clasifican según su forma, las moléculas de adhesión que los componen, los elementos a los que se unen y sus interacciones con el citoesqueleto. La primera vez que se observaron fue con el microscopio electrónico y se clasificaron morfológicamente, pero fueron las técnicas de biología molecular las que permitieron desentrañar sus estructuras moleculares.
Unión estrecha
Esquema de las uniones estrechas de las células epiteliales del digestivo. La estructura molecular parece ser similar en los distintos tipos de epitelios. (Modificado de Niessen 2007)
Las uniones estrechas o zonula occludens se encuentran en las partes apicales de los epitelios y en el tejidomuscular cardiaco. Establecen uniones tanfuertes y estrechas entre las células contiguas que prácticamente no dejan espacio intercelular entre sus membranas plasmáticas, limitando la difusión de sustancia solubles extracelulares. Las uniones estrechas forman una especie de cinturón que rodea todo el perímetro celular, en el caso de las células epiteliales. Además de mantener cohesionadas fuertemente a las células realizan otras funciones. En los epitelios, por ejemplo en el epitelio digestivo, impiden la difusión intercelular evitando que las sustancias del interior del tubo digestivo penetren en el organismo por los espacios intercelulares. Esto obliga a las sustancias a ser capatadas selectivamente por parte de las células epiteliales, donde son trasnformadas y liberadas al torrente sanguíneo. Pero, además, las uniones estrechas permiten la polaridad de las células epiteliales puesto que impiden la difusión lateral de moléculas insertas en sus membranas celulares. Es decir, actúan como una barrera física a la difusión lateral de las moléculas de la membrana plasmática. Con ello se consigue una zona o dominio apical con un juego de moléculas distinto al que hay en el domino latero-basal de la célula epitelial. Esta separación es importante para establecer un camino de captación y liberación de sustancias desde el exterior hacia el interior.
Las uniones estrechas están formadas por la ocludina y por una familia de moléculas denominadasclaudinas, que son las proteínas transmembrana encargadas de establecer los contactos célula-célula. Las claudinas parecen ser las más importantes en el establecimiento de la unión y en estas uniones forman unos poros que dejan pasar ciertos iones por el espacio extracelular, no más de 1 nanometro de diámetro. Hay 20 tipos de claudinas, cada una de las cuales forma uno poro extracelular distinto y así los epitelios pueden modificar la selectividad de su permeabilidad intercelular según el tipo de claudina que expresen. El dominio intracelular de estas moléculas interactúa con otras moléculas denominadas ZO, las cuales forman un entramado que interacciona con los filamentos de actina del citoesqueleto y con otras proteínas citosólicas que desencadenan cascadas de señalización.
Las uniones adherentes o zonula adherens son complejos de unión que se forman en las células epiteliales y que se sitúan próximas y basales a las uniones estrechas. Su misión es unir células vecinas. Son los primeros complejos de unión que se forman durante el desarrollo de los epitelios, aparece antes que las uniones estrechas, por lo que parecen actuar en procesos morfogenéticos durante el desarrollo embrionario. Al igual que las uniones estrechas forman una estructura a modo de cinturón en todo el perímetro celular. Las E-cadherinasson las moléculas encargadas de realizar las conexiones célula-célula con su dominio extracelular, mientras que el intracelular contacta con los filamentos de actina. En el entramado molecular que se asocia con el dominio interno de las cadherinas se encuentra la β-catenina que puede desencadenar cambios en la expresión génica cuando se desplaza hasta el núcleo.
Desmosoma
Organización y composición de los desmosomas (modificado de Huber 2003)
Los desmosomas o macula adherens, al contrario que los dos complejos de unión anteriores, establecen conexiones puntuales en forma de disco entre células vecinas, como si fuesen remaches. Son muy abundantes entre las células epiteliales y entre las musculares, pero también en otros tejidos como el nervioso. Las uniones entre células están mediadas por moléculas del tipo cadherinas denominadas desmogleínas y desmocolinas. El dominio intracelular de estas cadherinas contacta con losfilamentos intermedios como las queratinas, gracias a proteínas intermediarias.
Los hemidesmosomas y las uniones focales establecen uniones fuertes entre las células y la matriz extracelular. En ambos casos las uniones se establecen por integrinas. Los hemidesmosomas unen las células epiteliales a la lámina basal gracias al dominio extracelular de la integrina, mientras que el dominio intracelular contacta con los filamentos intermedios citosólicos. Aunque los hemidesmosomas parecen desmosomas sin una de sus partes, molecularmente son diferentes. Las uniones focales unen a las células con diversos tipos de matrices extracelulares gracias a otro tipo de integrinas que en su dominio intracelular contacta con los filamentos de actina.
Hemidesmosoma

Esquema un hemidesmosma localizado en la base de un epitelio de mamífero. (Modificado de Hahn 2001)
Algunos autores suelen colocar en este apartado de estructuras cohesivas macromoleculares a las uniones en hendidura. Estas son uniones entre células establecidas por unas moléculas denominadas conexinas. Sin embargo, las uniones en hendidura no tienen como principal misión cohesionar tejidos sino permitir la comunicación directa entre citoplasmas de células vecinas, gracias a los canales que crean las conexinas. Por tanto, veremos estas estructuras cuando hablemos de la comunicación celular.



La célula 

4. EL NÚCLEO 

El núcleo es la estructura que caracteriza a las células eucariotas. Es el compartimento donde se encuentra el ADN y toda la maquinaria necesaria para transcribir su información a ARN. Normalmente apareceun solo núcleo por célula, aunque en algunos casos hay más de uno, como ocurre en los osteoclastos, en las fibras musculares esqueléticas o en los epitelios de algunos invertebrados. La forma nuclear es variable y se suele adaptar a la forma celular, aunque no siempre es así. Por ejemplo, los neutrófilos de la sangre poseen núcleos multilobulados. La localización habitual del núcleo es en el centro de la célula, pero también puede situarse en otras posiciones más periféricas. Así, en las células secretoras se puede localizar en la parte basal de la célula y en las musculares esqueléticas se dispone en las proximidades de la membrana plasmática.
Núcleos

El tamaño de los núcleos es diferente dependiendo del tipo celular, aunque tengan la misma cantidad de ADN. En esta imagen se muestran neuronas y glía, las primeras con la cromatina más laxa, mientras que la glía tiene el ADN más compactado y su núcleo es mucho más pequeño.
Aunque la cantidad de ADN es prácticamente idéntica en todas las células de un organismo, el tamaño del núcleo puede ser diferente. Además, células de igual tamaño pero con distintas cantidades de ADN tienen núcleos con dimensiones similares. Estos datos indican que el tamaño del núcleo se adapta al tamaño celular, pero no depende de la cantidad de ADN.
Núcleos

Distintos tipos de núcleos. A. Células epiteliales de la vesícula biliar de humanos con los núcleos redondeados. B Monocito de la sangre con el núcleo arriñonado. C. Neutrófilos de la sangre con los núcleos multilobulados. D. Vista parcial de una célula muscular multinucleada, con los núcleos situados en zona periférica (flechas). 
El núcleo consta de dos componentes que se pueden distinguir morfológicamente: laenvuelta nuclear y el nucleoplasma. La envuelta nuclear separa el nucleoplasma del citoplasma. En ella se encuentran los poros nucleares que comunican estos dos espacios, permitiendo el trasiego de moléculas en los dos sentidos pero de una manera específica y regulada. En el nucleoplasma se encuentra el ADN y sus proteínas asociadas formando la cromatina, que si está muy compactada se le denomina heterocromatina y si aparece más laxa se le denomina eucromatina. También en el nucleoplasma se encuentra su compartimento más conspicuo, el nucléolo. También en el nucleoplasma se observan estructuras densas denominadas cuerpos nucleares, que son agrupaciones de moléculas, cromatin y proteínas que realizan una función común.
En este apartado del atlas podríamos tratar todos los procesos relacionados con la transcripción y la regulación génica. Quizá en el futuro se abra dicho capítulo pero por ahora trataremos someramente la morfología nuclear y aconsejamos buscar información sobre el ADN en textos o sitios web relacionados con la genética.

No hay comentarios:

Publicar un comentario