LÍPIDOS.
1.-CONCEPTO Y CLASIFICACIÓN.
Así como para otras biomoléculas resulta fácil establecer una definición desde el punto de vista químico, en el caso de los lípidos esta tarea entraña una mayor dificultad, ya que constituyen un grupo de sustancias químicamente muy heterogéneo que no se caracteriza, como otras biomoléculas, por la posesión de un determinado conjunto de grupos funcionales. Por ello, resulta mucho más conveniente identificarlos sobre la base de una de sus propiedades físicas: su mayor o menor solubilidad en distintos tipos de disolventes. Así, se considera que los lípidos son un grupo de biomoléculas que se caracterizan por ser poco o nada solubles en agua y, por el contrario, muy solubles en disolventes orgánicos no polares. Aunque químicamente heterogéneos, todos presenten un denominador común estructural: la totalidad, o al menos una parte significativa, de su molécula es de naturaleza hidrocarbonada, y por lo tanto apolar. Este rasgo estructural común es el responsable de su insolubilidad en agua y de su solubilidad en disolventes no polares. Los lípidos desempeñan en las células vivas una gran variedad de funciones, entre las que destacan las de carácter energético y estructural.
La clasificación de los lípidos también resulta problemática, dadas las características químicas tan diversas que poseen. Adoptaremos una de las más comunes, que divide a los lípidos en dos grandes categorías: lípidos saponificables, que contienen ácidos grasos unidos a algún otro componente, generalmente mediante un enlace tipo éster, y lípidos no saponificables, que no contienen ácidos grasos, aunque también incluyen algunos derivados importantes de éstos.
Aunque la mayoría de los lípidos tienen pesos moleculares relativamente bajos, se suelen incluir, de una manera un tanto arbitraria, entre las macromoléculas. Debemos recordar que las macromoléculas están formadas por unidades monoméricas relativamente simples llamadas sillares estructurales. Las unidades monoméricas o sillares estructurales que con más frecuencia aparecen formando parte de los lípidos, aunque no están presentes en todos ellos, son los ácidos grasos. En la anterior clasificación no se han incluido los ácidos grasos, ya que éstos apenas se encuentran en la naturaleza en estado libre, sino formando parte de distintos tipos de lípidos.
2. UNIDADES MONOMÉRICAS: LOS ÁCIDOS GRASOS.
Los ácidos grasos son compuestos orgánicos que poseen un grupo funcional carboxilo y una cadena hidrocarbonada larga que puede tener entre 4 y 36 átomos de carbono (Figura 6.1). La mayoría de los ácidos grasos naturales tiene un número par de átomos de carbono que oscila entre 12 y 24, siendo especialmente abundantes los de 16 y 18. El predominio de los ácidos grasos con número par de átomos de carbono se debe a que estos compuestos se sintetizan en las células a partir de unidades de dos carbonos. En la Tabla 6.1 aparecen los ácidos grasos naturales más importantes.
Nombre trivial | Nº de átomosde carbono | Estructura | Puntode fusión |
Ácidos grasos saturados | |||
Ácido láurico | 12 | CH3-(CH2)10-COOH | 44,2 |
Ácido mirístico | 14 | CH3-(CH2)12-COOH | 54,0 |
Ácido palmítico | 16 | CH3-(CH2)14-COOH | 63,0 |
Ácido esteárico | 18 | CH3-(CH2)16-COOH | 69,6 |
Ácido araquídico | 20 | CH3-(CH2)18-COOH | 76,5 |
Ácido lignocérico | 24 | CH3-(CH2)22-COOH | 86,0 |
Ácidos grasos insaturados | |||
Ácido palmitoleico | 16 | CH3-(CH2)5-CH=CH-(CH2)7-COOH | -0,5 |
Ácido oleico | 18 | CH3-(CH2)7-CH=CH-(CH2)7-COOH | 13,4 |
Ácido linoleico | 18 | CH3-(CH2)4-CH=CH-CH2-CH=CH-(CH2)7-COOH | -3,0 |
Ácido linolénico | 18 | CH3-CH2-CH=CH-CH2-CH=CH-CH2-CH=CH-(CH2)7-COOH | -11,0 |
Ácido araquidónico | 20 | CH3-(CH2)4-CH=CH-CH2-CH=CH-CH2-CH=CH-CH2-CH=CH-(CH2)3-COOH | -49,5 |
Tabla 6.1
Existen dos tipos principales de ácidos grasos: los saturados, que no poseen dobles enlaces, y los insaturados, que poseen uno o más dobles enlaces a lo largo de su cadena hidrocarbonada (Figura 6.2). Entre los insaturados los más abundantes son monoinsaturados, con un solo doble enlace entre los carbonos 9 y 10. Los ácidos grasos poliinsaturados suelen tener un doble enlace entre los carbonos 9 y 10 y los dobles enlaces adicionales situados entre éste y el extremo metilo terminal de la cadena hidrocarbonada. La existencia de dobles enlaces implica la existencia de isómeros geométricos (cis-trans) según sea la disposición de los sustituyentes a ambos lados del doble enlace. La mayoría de los ácidos grasos insaturados que existen en la naturaleza presentan configuración cis.
La geometría tetraédrica de los orbitales del carbono determina que las cadenas hidrocarbonadas de los ácidos grasos adopten una característica disposición en zig-zag tal y como se aprecia en las Figuras 6.1 y 6.2. Sin embargo, los ácidos grasos saturados e insaturados difieren significativamente en cuanto a la disposición espacial de sus cadenas hidrocarbonadas. En los saturados, aunque la libre rotación de los sustituyentes alrededor de los enlaces sencillos proporciona una gran flexibilidad a la cadena, la conformación más estable es aquella en la que dicha cadena se encuentra lo más extendida posible, minimizando así las interacciones repulsivas entre átomos vecinos (Figura 6.1). En los insaturados, por otra parte, la tendencia de la cadena hidrocarbonada a adoptar la conformación más extendida se ve limitada por la rigidez de los dobles enlaces, que impide que los distintos sustituyentes de los carbonos implicados en ellos puedan rotar a su alrededor. Esto determina la aparición de cambios de orientación en la dirección de la cadena hidrocarbonada de los ácidos grasos insaturados, no pudiendo adoptar ésta una conformación totalmente extendida. En concreto, en los ácidos grasos cis-monoinsaturados, que son los más abundantes, la cadena presenta dos tramos rectilíneos, separados por un doble enlace, que forman entre sí un ángulo de unos 120º (Figura 6.3). Los poliinsaturados presentan estructuras complejas con varios tramos rectilíneos separados por dobles enlaces (Figura 6.4). Los dobles enlaces trans (muy raros en la naturaleza) apenas determinan una ligera sinuosidad en la cadena sin que ello suponga un cambio significativo en la orientación de la misma: los ácidos grasostrans-insaturados presentan conformaciones espaciales muy similares a las de los saturados (Figura 6.3). Estas diferencias en cuanto a la conformación espacial de los distintos tipos de ácidos grasos influyen considerablemente en sus propiedades físicas y tienen notables implicaciones biológicas.
No hay comentarios:
Publicar un comentario