«Conceptos eléctricos»
Se denomina corriente alterna (abreviada CA en español y AC en inglés, de alternating current) a la corriente eléctrica en la que la magnitud y el sentido varían cíclicamente.
La forma de oscilación de la corriente alterna más comúnmente utilizada es la oscilación senoidal con la que se consigue una transmisión más eficiente de la energía, a tal punto que al hablar de corriente alterna se sobrentiende que se refiere a lacorriente alterna senoidal.
Sin embargo, en ciertas aplicaciones se utilizan otras formas de oscilación periódicas, tales como la triangular o la cuadrada.
Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las industrias. Sin embargo, las señales de audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna. En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (o modulada) sobre la señal de la CA.- .......................:http://es.wikipedia.org/w/index.php?title=Especial:Libro&bookcmd=download&collection_id=29ba5e3fc9a479ec0276e24d9becb7aab769b1f9&writer=rdf2latex&return_to=Corriente+alterna
LA CORRIENTE ALTERNA (C.A.) |
Además de la existencia de fuentes de FEM de corriente directa o continua (C.D.) (como la que suministran las pilas o las baterías, cuya tensión o voltaje mantiene siempre su polaridad fija), se genera también otro tipo de corriente denominada alterna (C.A.), que se diferencia de la directa por el cambio constante de polaridad que efectúa por cada ciclo de tiempo. |
La característica principal de una corriente alterna es que durante un instante de tiempo un polo es negativo y el otro positivo, mientras que en el instante siguiente las polaridades se invierten tantas veces como ciclos por segundo o hertz posea esa corriente. No obstante, aunque se produzca un constante cambio de polaridad, la corriente siempre fluirá del polo negativo al positivo, tal como ocurre en las fuentes de FEM que suministran corriente directa. Veamos un ejemplo práctico que ayudará a comprender mejor el concepto de corriente alterna: |
Si hacemos que la pila del ejemplo anterior gire a una determinada velocidad, se producirá un cambio constante de polaridad en los bornes donde hacen contacto los dos polos de dicha pila. Esta acción hará que se genere una corriente alterna tipo pulsante, cuya frecuencia dependerá de la cantidad de veces que se haga girar la manivela a la que está sujeta la pila para completar una o varias vueltas completas durante un segundo. En este caso si hacemos una representación gráfica utilizando un eje de coordenadas para la tensión o voltaje y otro eje para el tiempo en segundos, se obtendrá una corriente alterna de forma rectangular o pulsante, que parte primero de cero volt, se eleva a 1,5 volt, pasa por “0” volt, desciende para volver a 1,5 volt y comienza a subir de nuevo para completar un ciclo al pasar otra vez por cero volt. Si la velocidad a la que hacemos girar la pila es de una vuelta completa cada segundo, la frecuencia de la corriente alterna que se obtiene será de un ciclo por segundo o hertz (1 Hz). Si aumentamos ahora la velocidad de giro a 5 vueltas por segundo, la frecuencia será de 5 ciclos por segundo o hertz (5 Hz). Mientras más rápido hagamos girar la manivela a la que está sujeta la pila, mayor será la frecuencia de la corriente alterna pulsante que se obtiene. Seguramente sabrás que la corriente eléctrica que llega a nuestras casas para hacer funcionar las luces, los equipos electrodomésticos, electrónicos, etc. es, precisamente, alterna, pero en lugar de pulsante es del tipo sinusoidal o senoidal. En Europa la corriente alterna que llega a los hogares es de 220 volt y tiene una frecuencia de 50 Hz, mientras que en la mayoría de los países de América la tensión de la corriente es de 110 ó 120 volt, con una frecuencia de 60 Hz. La forma más común de generar corriente alterna es empleando grandes generadores o alternadores ubicados en plantas termoeléctricas, hidroeléctricas o centrales atómicas.
Corriente alterna, efecto en el organismo
Principales Factores Que Influyen En El Efecto Eléctrico
Intensidad de la corriente Es uno de los factores que más inciden en los efectos y lesiones ocasionados por el accidente eléctrico. En relación con la intensidad de corriente, son relevantes los conceptos que se indican a continuación. Umbral de percepción: es el valor mínimo de la corriente que provoca una sensación en una persona, a través de la que pasa esta corriente. En corriente alterna esta sensación de paso de la corriente se percibe durante todo el tiempo de paso de la misma; sin embargo, con corriente continua solo se percibe cuando varía la intensidad, por ello son fundamentales el inicio y la interrupción de¡ paso de la corriente, ya que entre dichos instantes no se percibe el paso de la corriente, salvo por los efectos térmicos de la misma. Generalizando, la Norma CEI 479-11994 considera un valor de 0,5 mA en corriente alterna y 2 mA en corriente continua, cualquiera que sea el tiempo de exposición. Umbral de reacción: es el valor mínimo de la corriente que provoca una contracción muscular. Umbral de no soltar: cuando una persona tiene sujetos unos electrodos, es el valor máximo de la corriente que permite a esa persona soltarlos. En corriente alterna se considera un valor máximo de 10 mA , cualquiera que sea el tiempo de exposición. En corriente continua, es difícil establecer el umbral de no soltar ya que solo el comienzo y la interrupción del paso de la corriente provoca el dolor y las contracciones musculares. Umbral de fibrilación ventricular: es el valor mínimo de la corriente que puede provocar la fibrilación ventricular. En corriente alterna, el umbral de fibrilación ventricular decrece considerablemente si la duración del paso de la corriente se prolonga más allá de un ciclo cardíaco. Adecuando los resultados de las experiencias efectuadas sobre animales a los seres humanos, se han establecido unas curvas, por debajo de las cuales no es susceptible de producirse. La fibrilación ventricular está considerada como la causa principal de muerte por choque eléctrico. En corriente continua, si el polo negativo está en los pies (corriente descendente), el umbral de fibrilación es de aproximadamente el doble de lo que sería si el polo positivo estuviese en los pies (corriente ascendente). Si en lugar de las corrientes longitudinales antes descritas fuese una corriente transversal, la experiencia sobre animales hace suponer que, solo se producirá la fibrilación ventricular con intensidades considerablemente más elevadas. En la figura 3 se representan los efectos de una corriente continua ascendente con trayecto mano izquierda-los dos pies; se puede apreciar que para una duración de choque superior a un ciclo cardíaco el umbral defibrilación en corriente continua es muy superior que en corriente alterna.
Fig. 3: Corriente continua, efecto en el organismo
Período vulnerable: afecta a una parte relativamente pequeña del ciclo cardíaco durante el cual las fibras de¡ corazón están en un estado no homogéneo de excitabilidad y la fibrilación ventricular se produce si ellas son excitadas por una corriente eléctrica de intensidad suficiente. Corresponde a la primera parte de la onda T en el electrocardiograma y supone aproximadamente un 10% del ciclo cardíaco completo. Ver figura 4.
Fig. 4: Periodo vulnerable del ciclo cardiaco
La figura 5 reproduce un electrocardiograma en el cual se representan los efectos de la fibrilación ventricular, indicándose las variaciones que sufre la tensión arterial cuando se produce la fibrilación, la tensión arterial experimenta una oscilación e inmediatamente, decrece, en cuestión de un segundo, hacia valores mortales
Fig. 5: Efecto de la fibrilación ventricular en el electrocardiograma y en la tensión arterial
Duración del contacto eléctrico Junto con la intensidad es el factor que más influye en el resultado del accidente. Por ejemplo, en corriente alterna y con intensidades inferiores a 100 mA, la fibrilación puede producirse si el tiempo de exposición es superior a 500 ms.
Impedancia del cuerpo humano
Su importancia en el resultado del accidente depende de las siguientes circunstancias: de la tensión, de la frecuencia, de la duración del paso de la corriente, de la temperatura, del grado de humedad de la piel, de la superficie de contacto, de la presión de contacto, de la dureza de la epidermis, etc. Las diferentes partes del cuerpo humano, tales como la piel, los músculos, la sangre, etc., presentan para la corriente eléctrica una impedancia compuesta por elementos resistivos y capacitivos. Durante el paso de la electricidad la impedancia de nuestro cuerpo se comporta como una suma de tres impedancias en serie: • Impedancia de la piel en la zona de entrada. • Impedancia interna del cuerpo. • Impedancia de la piel en la zona de salida.
Hasta tensiones de contacto de 50 V en corriente alterna, la impedancia de la piel varía, incluso en un mismo individuo, dependiendo de factores externos tales como la temperatura, la humedad de la piel, etc.; sin embargo, a partir de 50 V la impedancia de la piel decrece rápidamente, llegando a ser muy baja si la piel está perforada.
La impedancia interna del cuerpo puede considerarse esencialmente como resistiva, con la particularidad de ser la resistencia de los brazos y las piernas mucho mayor que la del tronco. Además, para tensiones elevadas la impedancia interna hace prácticamente despreciable la impedancia de la piel. Para poder comparar la impedancia interna dependiendo de la trayectoria, en la figura 6 se indican las impedancias de algunos recorridos comparados con los trayectos mano-mano y mano-pie que se consideran como impedancias de referencia (100%).
Fig. 6: Impedancia interna del organismo
En las tablas 1 y 2 se indican unos valores de la impedancia total del cuerpo humano en función de la tensión de contacto, tanto para corriente alterna y continua, respectivamente.
Tabla 1: Impedancia del cuerpo humano frente a la corriente alterna
Tabla 2: Impedancia de cuerpo humano frente a la corriente continua
Las variaciones de la impedancia del cuerpo humano en función de la superficie de contacto, se representan en la figura 7, en relación con la tensión aplicada. En la Instrucción MIE BT 001 artículo 58 del Reglamento Electrotécnico de Baja Tensión (REBT: Norma Española similar a nuestro Código Nacional de Electricidad) se considera que la resistencia del cuerpo entre mano y pie es de 2.500 ohm.
Fig. 7: Impedancia del cuerpo en función de la superficie de contacto (50 Hz)
En sí misma no es peligrosa pero, si la resistencia es baja, ocasiona el paso una intensidad elevada y, por tanto, muy peligrosa. El valor límite de la tensión de seguridad debe ser tal que aplicada al cuerpo humano, proporcione un valor de intensidad que no suponga riesgos para el individuo.
Como anteriormente se mencionó, la relación entre la intensidad y la tensión no es lineal debido al hecho de que la impedancia del cuerpo humano varía con la tensión de contacto. Ahora bien, por depender la resistencia del cuerpo humano, no solo de la tensión, sino también de la trayectoria y del grado de humedad de la piel, no tiene sentido establecer una única tensión de seguridad sino que tenemos que referirnos a infinitas tensiones de seguridad, cada una de las cuales se correspondería a una función de las distintas variables anteriormente mencionadas. Las tensiones de seguridad aceptadas por el CNE son 24 V para emplazamientos húmedos y 50 V para emplazamientos secos, siendo aplicables tanto para corriente continua como para corriente alterna de 60 Hz.
Frecuencia de la corriente alterna
Normalmente, para uso doméstico e industrial se utilizan frecuencias de 50 Hz (en U.S.A. de 60 Hz), pero cada vez es más frecuente utilizar frecuencias superiores, por ejemplo: • 400 Hz en aeronáutica. • 450 Hz en soldadura. • 4.000 Hz en electroterapia. • Hasta 1 MHz en alimentadores de potencia.
Experimentalmente se han realizado medidas de las variaciones de impedancia total del cuerpo humano con tensiones comprendidas entre 10 y 25 Voltios en corriente alterna, y variaciones de frecuencias entre 25 Hz y 20 kHz.
A partir de estos resultados se han deducido las curvas representadas en la figura 8, para tensiones de contacto comprendidas entre 10 y 1.000 Voltios y para un trayecto mano - mano o mano - pie.
Fig. 8: Impedancia total en función de la tensión y la frecuencia
Para tensiones de contacto de algunas decenas de voltios, la impedancia de la piel decrece proporcionalmente cuando aumenta la frecuencia. Por ejemplo, a 220 V con una frecuencia de 1.000 Hz la impedancia de la piel es ligeramente superior a la mitad de aquella a 50 Hz. Esto es debido a la influencia del efecto capacitivo de la piel. Sin embargo, a muy altas frecuencias disminuye el riesgo de fibrilación ventricular pero prevalecen los efectos térmicos. Con fines terapéuticos, es usual, en medicina el empleo de altas frecuencias para producir un calor profundo en el organismo. A partir de 100.000 Hz no se conocen valores experimentales que definan ni los umbrales de no soltar ni los umbrales de fibrilación; tampoco se conoce ningún incidente, salvo las quemaduras provocadas por intensidades de «algunos amperios» y en función de la duración del paso de la corriente. La corriente continua, en general, no es tan peligrosa como la alterna, ya que entre otras causas, es más fácil soltar los electrodos sujetos con la mano y que para duraciones de contacto superiores al período del ciclo cardiaco, el umbral de fibrilación ventricular es mucho más elevado que en corriente alterna.
Recorrido de la corriente a través del cuerpo
La gravedad del accidente depende del recorrido de la misma a través del cuerpo. Una trayectoria de mayor longitud tendrá, en principio, mayor resistencia y por tanto menor intensidad; sin embargo, puede atravesar órganos vitales (corazón, pulmones, hígado, etc.) provocando lesiones mucho más graves. Aquellos recorridos que atraviesan el tórax o la cabeza ocasionan los mayores daños. Las figuras 2 y 3 indicaban los efectos de la intensidad en función del tiempo de aplicación; en las mencionadas figuras se indicaba que nos referíamos al trayecto de «mano izquierda a los dos pies». Para otros trayectos se aplica el llamado factor de corriente de corazón «F», que permite calcular la equivalencia del riesgo de las corrientes que teniendo recorridos diferentes atraviesan el cuerpo humano. Se representan en la figura 9.
Fig. 9: Factor de corriente de corazón " F "
La mencionada equivalencia se calcula mediante la expresión: Ih = Iref / F siendo, Ih = corriente que atraviesa el cuerpo por un trayecto determinado. Iref = corriente «mano izquierda - pies». F = factor de corriente de corazón.
Como es lógico, para el trayecto de las figuras 2 y 3, el factor de corriente de corazón es la unidad. Se aprecia que de los trayectos definidos en esta tabla, el más peligroso es el de pecho - mano izquierda y el de menor peligrosidad de los reseñados el de espalda - mano derecha.
Por ejemplo, podemos aventurar que una corriente de 200 mA con un trayecto mano - mano tendrá un riesgo equivalente a una corriente de 80 mA con trayectoria mano izquierda - los dos pies.
Aplicación práctica N° 01
Como aplicación práctica de estos conceptos, vamos a desarrollar un sencillo ejemplo: La figura 10 representa dos estados sucesivos de una instalación provista de un interruptor diferencial (D). En el primer estado (1) se representa un motor (del) sin toma de tierra, con una derivación que ocasiona una diferencia de potencial entre la carcasa del motor y tierra de 150 Voltios.
Fig. 10:Caso práctico
En el segundo estado (II) se representa dicha instalación y a un individuo que se pone en contacto con la carcasa del motor. Siendo la resistencia del individuo de 1.500 Ohm indicar: a. Intensidad máxima que podrá circular a través del individuo. b. Tiempo máximo de actuación del interruptor diferencial para que no se alcancen los umbrales de no soltar y de fibrilación ventricular, tanto en corriente alterna de 50 Hz, como en corriente continua ascendente. c. Indicar, según la legislación vigente, cual debe ser el tiempo máximo de disparo del interruptor diferencial.
Cuestión b):
En corriente alterna Trayectoria mano derecha - pies: factor de corriente de corazón F = 0,8 Iref = F x Ih = 0,8 x 100 = 80 mA
Interpolando en el gráfico de corriente alterna (figura 2):
• Umbral de no soltar ³ 50 ms = 0,05 segundos • Umbral de fibrilación ³ 550 ms = 0,55 segundos
En corriente continua ascendente
lref = 80 mA Interpolando en el gráfico de corriente continua (figura 3): • Umbral de no soltar ³ 100 ms = 0, 1 segundos • Umbral de fibrilación ³ (no se alcanza)
Como se puede apreciar, en este caso concreto, el umbral de no soltarse alcanza en corriente alterna en la mitad de tiempo que en corriente continua, pero aún es más significativo el umbral de fibrilación que en corriente alterna se alcanzaría en tan solo cincuenta y cinco centésimas de segundo y, sin embargo, en corriente continua no se podría alcanzar
Cuestión c):
Según la norma de obligado cumplimiento UNE 20.383-75 (MIE REBT-044) en su apartado 18, para un interruptor automático diferencial de intensidad diferencial nominal de disparo ID N = 0,03 mA los tiempos de disparo deben ser: Si I = ID N Þ tiempo de disparo < 0,2 s Si I = 2 ID N Þ tiempo de disparo < 0, 1 s Si I = 10 ID N Þ tiempo de disparo < 0,04 s
En nuestro caso:
I = Ih = 100 mA ID N = 30 mA por tanto, I = (100/30) I D N Þ I = 3,3 I D N Luego el tiempo de disparo debe estar comprendido entre 0,04 y 0, 1 segundos; valores muy inferiores a los umbrales de fibrilación ventricular. Conclusión: en este caso, el interruptor diferencial dispara y desconecta la instalación antes de que se produzca la fibrilación ventricular en una persona en condiciones fisiológicas normales.
Tensiones Peligrosas
Cuando se toca el electrodo de tierra o bien la instalación de puesta a tierra sin aislar y un punto cualquiera de tierra, la persona queda sometida a una tensión de contacto en el caso de producirse un defecto. La referencia IEEE 80 Guide for Safety in Alterning Current Substation Grounding, indica como un valor promedio de la resistencia del cuerpo humano, 1, 000 ohmios, considerando como el contacto establecido entre la mano y los pies, como también entre los pies. Una persona saludable puede soportar un nivel de corriente hasta: 1 mA De 10 – 25 mA: Falta de control muscular A 100 mA: Fibrilación ventricular > 100 mA: Paro cardiaco severas quemaduras
Según el estudioso DALZIEL, cuyas investigaciones fueron publicadas en la IEEE GUIDE FOR SAFETY IN AC SUBSTATION GROUNDING ANSI/IEEE Std 80 – 1986 (Revision of IEEE Std 80 – 1976); desarrolló una relación empírica en base a la experiencia de voluntarios, concluyendo que de un 99.5% de los hombres participantes en los experimentos (sin fibrilación) respondía a la siguiente fórmula:
Sb = (Ib)2 Ts Sb: constante empírica relacionada a la energía tolerada por cierto porcentaje de la población. Ib: magnitud rms de la corriente a través del cuerpo humano (Amperios). Ts: Tiempo de duración de la exposición a la corriente (segundos)
El valor empírico de Sb es de 0.0135
Despejando las variables tenemos que la Corriente máxima en el cuerpo humano:
Corriente Máxima Admisible:
Ib = 0.116 / Ö Ts Para personas con un peso promedio de 50 kg. Valida en el rango de 0.03 a 3 segundos. Ib = 0.157 / Ö Ts Para personas con un peso promedio de 70 kg Donde T = Tiempo de duración del contacto Resistencia del cuerpo Admisible: Para los cálculos convencionales se toman estos valores de la resistencia del cuerpo humano:
La tensión de toque para el caso de contacto de metal a metal :
E50 = 116 / Ö Ts Para personas con un peso promedio de 50 kg E70 = 157 / Ö Ts Para personas con un peso promedio de 70 kg Referencia: Canadian Electrical Code, Part I Versión en consulta del nuevo código nacional de electricidad
Tabla 52
(En subestaciones: Ver Reglas 190-304, 190-306, 190-308, 190 - 310 y 190 – 312) Tensiones de toque y paso tolerables
|
No hay comentarios:
Publicar un comentario